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Abstract. Radiography is widely used in orthopedics for its affordabil-
ity and low radiation exposure. 3D reconstruction from a single radio-
graph, so-called 2D-3D reconstruction, offers the possibility of various
clinical applications, but achieving clinically viable accuracy and com-
putational efficiency is still an unsolved challenge. Unlike other areas in
computer vision, X-ray imaging’s unique properties, such as ray penetra-
tion and standard geometry, have not been fully exploited. We propose
a novel approach that simultaneously learns multiple depth maps (front
and back surfaces of multiple bones) derived from the X-ray image to
computed tomography (CT) registration. The proposed method not only
leverages the standard geometry characteristic of X-ray imaging but also
enhances the precision of the reconstruction of the whole surface. Our
study involved 600 CT and 2651 X-ray images (4 to 5 posed X-ray images
per patient), demonstrating our method’s superiority over traditional ap-
proaches with a surface reconstruction error reduction from 4.78 mm to
1.96 mm and further to 1.76 mm using higher resolution and pretrain-
ing. This significant accuracy improvement and enhanced computational
efficiency suggest our approach’s potential for clinical application.

Keywords: Monocular depth estimation · X-ray radiography · Deep
learning · Inverse problem.

1 Introduction

Achieving monocular or 2D-3D reconstruction is a long-standing challenge in
computer vision and medical engineering. Practical 3D reconstruction from ra-
diographs has recently been a hot topic, considering the significance of clinical
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applications. Usually, multiple radiographs are necessary to perform 3D recon-
struction [2,40,3,9,1,8,23,12]. Only a few works have tried to achieve 3D recon-
struction using single X-ray images [33,17,22,34]. However, existing works suffer
from low reconstruction quality, accuracy, and resolution as well as high compu-
tational cost, which significantly limit clinical applications. On the other hand,
monocular depth estimation from a single camera image [13], which offers im-
pressive 3D reconstruction, has been extensively studied and widely applied,
becoming an essential part of many vision models [26,38,35]. Nevertheless, the
relation between a depth map and an X-ray image has barely been explored,
especially for the topic of 2D-3D reconstruction.

In this paper, we shed light on a new path to the 3D reconstruction from a
single X-ray image using depth estimation. Realizing the unique properties of
penetrating rays in X-ray imaging, we propose simultaneous 3D dual-face (front
and back) depth estimation from a single X-ray image (namely 3DDX) for 3D
reconstruction. In the classic monocular depth estimation problem, the relative
depth estimation (RDE) [32,39], which only cares about relative depth, and
metric depth estimation (MDE), which estimates absolute physical-unit depth
[13,24,4,5,6] are two major task categories. We focus on MDE for meaningful clin-
ical application with physical units. However, conventional losses were designed
to estimate a single depth map, whereas we try to estimate multiple depth maps
from a single input. To tackle that, we propose generalizing the loss functions
to multi-depth-map supervision. Furthermore, we take advantage of a standard
imaging geometry, namely the relative position of the X-ray source with respect
to the detector, by realizing that the diagnostic radiography is standardized [10].
To the best of our knowledge, we are the first to achieve 3D bone reconstruction
from a single X-ray image acquired in a clinical setup using depth estimation.
Contribution: We propose a method (3DDX) for reconstructing 3D bone sur-
faces with absolute scaling and large field-of-view while retaining high-resolution
details from single X-ray images acquired in a clinically standardized geometric
setup. Our contribution is three-fold: 1) proposal of a dual-face depth estima-
tion from a single X-ray image by exploiting information from the penetrating
X-ray, 2) proposal of a new loss function in a depth map estimation network
allowing the scale-specific training under a specific geometric constraint, 3) ex-
tensive evaluation using a large-scale hip X-ray image database (600 patients,
2651 X-ray images) paired with CT image through 2D-3D registration. Our code
is available at https://github.com/Kayaba-Akihiko/3DDX.

2 Method

Fig. 1 shows an overview of the proposed method. We build a novel framework
for estimating the complete 3D shape of the femur and pelvis (including unseen
regions) from a single X-ray image. To this end, we propose to estimate front-
and back-face depth maps for each target object (e.g., a hemipelvis) for the 3D
reconstruction from a plain X-ray image. A depth maps estimation model Gd is
trained to estimate all the depth maps. We propose a simple yet effective loss

https://github.com/Kayaba-Akihiko/3DDX
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Fig. 1. Overview of the proposed method. (a) The dual-face depth estimation that
uses a depth maps estimation model Gd and a bone segmentation model Gs to mask
the invalid region. (b) 3D surface reconstruction from the estimated depth maps using
X-ray geometry to produce initial 3D estimation. (c) 3D shape completion using bone
statistical shape model fitting Gc.

function to improve the depth estimation performance by leveraging the stan-
dardized geometry information in X-ray imaging. We also train a segmentation
model to generate the masks of target objects from an X-ray image, masking the
invalid region (i.e., the non-target region) on the estimated depth maps for bone
reconstruction. Using the given X-ray image geometry, the point cloud (PCD)
of bone is constructed from the estimated depth maps. We perform 3D shape
completion with the statistical shape model (SSM) fitting Gc to validate further
the superiority of using dual-face depth.

2.1 Depth maps estimation

We revisited a popular MDE loss, scale-invariant (SI) loss [13,24,4] that preserves
learning the global scale and shift for estimating a depth map by minimizing error
variance defined as

Lsi = α
√

D(g) = α

√
1

|I|
∑
i∈I

g2
i − λvar

|I|2
(
∑
i∈I

gi)2, (1)

where I ≡ {i ∈ A : vi = 1}, A ≡ {1, 2, ..., N} are the indices of valid pixel in N
pixels indicated by a label map v; |I| represents the number of valid pixels; and
gi = log ŷi − log yi is the error logarithm between the predicted depth ŷi and
ground truth depth yi at i-th pixel. α and λvar are two hyper-parameters which
we set to 10 and 0.85, respectively, following [24,4]. For the MDE tasks, the costly
depth bin techniques [5,6,4] are often used. This work focuses on improving the
SI loss for multiple-depth-maps supervision. Generalizing the SI loss to multiple
depth maps leads to multiple functions, considering the inter-depth-map pixels
relations since the loss considers pixel-to-pixel relations by minimizing the error
variance. In the following subsections, we proposed the SI loss generalizations
and improvement. We will discuss the performance difference in the Sec. 3.



4 Y. Gu et al.

Generalization to multiple depth maps. Eq. (2) and (3) are two straight-
forward ways to generalize the SI loss Lsi into multiple depth maps. Assuming
J ≡ {1, 2, ..., P} are the indices of P depth maps. Ij ≡ {i ∈ A : vj

i = 1} are
the indices of valid pixel in j-th depth map indicated by the j-th label map vj .
Thus, the gj

i is the error logarithm at i-th pixel between the j-th ground truth
and estimated depth maps. In particular, Eq. (2) is a simple averaging of the
SI losses of all depth maps. In this way, the inter-depth-map pixels are indepen-
dent of each other as the error variance is calculated separately. For considering
inter-depth-map pixels relation, Eq. (3) is presented. The Lsi Eq. (1) is a special
case of Lindep

si and Ldep
si when only a single depth map (|J | = 1) in supervision.

Lindep
si = α

|J |
∑
j∈J

√
D(gj) = α

|J |
∑
j∈J

√
1

|Ij |
∑
i∈Ij

(gj
i )2 − λvar

|Ij |2
(
∑
i∈Ij

gj
i )2 (2)

Ldep
si = α

√
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√
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∑
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i )2

(3)
Center-aligned scale-invariant loss. The vanilla SI error supervises both
scale and shift, which is a general need but not in our case. To leverage the
standard imaging geometry information, we propose the center-aligned SI loss
(CASI), which supervises only the scale while allowing depth shifting by center
alignment. A popular way to align the center is centralizing the prediction and
ground truth to the depth origin. However, the scale-invariant log error only
allows positive depth. Consequently, we propose to align the estimated depth
center to the ground truth center using (4) to calculate the error logarithm, where
the t(·) calculates the mean of given valid pixels. The ε is a numerical safeguard
which we set to 1 × 10−6 to avoid division by zero. The proposed independent
and dependent CASI losses were then defined as Lindep

casi = α
N

∑
j

√
D(hj) and

Ldep
casi = α

√
M(h), respectively. Thus, the proposed CASI loss does not introduce

new tuning parameters, which lowers the hyperparameter search burden.

hj
i = log

(
ReLU

(
ŷj

i + t(y) − t(ŷ)
)

+ ε
)

− log (yj
i + ε) (4)

Segmentation of depth maps. We train a segmentation model Gs to generate
the bone masks for removing the background region in the 3D bone surface
reconstruction step. We use the Dice semimetric losses [36] and Cross-Entropy
loss with label smoothing [30] for training. Segmentation in this task is considered
a pixel-wise multi-class classification, allowing label overlay (e.g., in the hip joint
region).

2.2 Surface reconstruction and 3D shape completion

We compare the 3D shape completion performance between the single-face-
depth-map-reconstructed 3D shape (the conventional method) and the dual-
face-depth-map-reconstructed 3D shape (our proposal). The object surfaces are
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reconstructed from estimated depth maps with the predicted bone labels using
standard imaging geometry. We perform SSM fitting [2,37] for 3D shape comple-
tion. We build an SSM for each object we target (i.e., two SSM models built from
a training dataset in this paper). The GBCPD algorithm is used [20] for both
rigid and non-rigid registration for constructing point-to-point correspondence.
During the inference, the statistical shape models are fitted to the incomplete
shape to estimate the complete shape. The cost function is defined as

Lssm(θ) = dist(clip(ŝ(θ), s), s) + λl2
Nθ

∑
i

θ2
i , (5)

where θ is the Nθ-D vector for the optimization for fitting and the second term is
a λl2-weighted l2 regularization. clip(ŝ(θ), s) clips the estimated shape ŝ(θ) to as
the same field-of-view as the fitting target shape s. The function dist(·) measures
the bi-directional shape distance if the fitting target is built from the proposed
dual-face depth maps; otherwise, it measures the directional shape distance from
the target to the shape model. The L-BFGS algorithm [25] was used to search
the optimal θ. The λl2 was set to 0.01.

3 Experiment and Result

We collected 2651 X-ray images (600 patients) paired with their respective CT
images. CT bone segmentation [19] and X-ray 2D-3D registration [31] were per-
formed to produce ground truth bone 3D shapes and depth maps. Ethical ap-
proval was obtained from the Institutional Review Boards at Osaka University
and Nara Institute of Science and Technology (approval numbers 15056-3 and
2019-M-6, respectively). In this study, we aim to reconstruct the pelvis and fe-
murs with left and right sides separated. Each object (hemi-bone) CT produced
two depth maps (front and back faces) to train the depth model Gd and segmen-
tation model Gs, i.e., eight depth maps (four objects) for a single X-ray, resulting
in 10604 bone objects (8626 disease-affected, 1978 healthy, as graded by [29]).
In Sec. 3.1, we evaluate the 3D shapes reconstructed from estimated single-
and dual- face depth maps. Through 3D shape completion, we further show the
performance difference between completion from single- and dual- face-depth-
map-reconstructed 3D shapes, which we report in Sec. 3.2. We also compare
the proposed CASI loss with conventional SI loss in depth map (2D space) in
Sec. 3.3 and reconstructed shape (3D space) in Sec. 3.1. We started from train-
ing with a low 256 × 256 image resolution; however, we further explore perfor-
mance improvement by image resolution scaling and incorporating pretraining
with Masked Autoencoder [18]. A four-fold cross-validation policy was applied
to all the experiments, including constructing the SSM models. We excluded 346
(3.26%) objects due to radiography-CT registration failure before gathering the
fold results. The segmentation model Gs achieved a Dice coefficient of 0.988.
For evaluating 3D shape, the average symmetric surface distance (ASSD), 95
percentile Hausdorff distance (HD95), earth mover’s distance (EMD), and l2-
chamfer distance (CDl2) were used. The depth center of the estimated 3D shape
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was aligned with that of the ground truth shape, i.e., a shift in the Z direction
was added to the estimated 3D shape before calculating evaluation metrics. For
evaluating the depth map, we used mean absolute error (MAE) and root mean
square error (RMSE).
Implementation details The training policy was consistent across all experi-
ments. The AdamW optimizer [28] with SGDR [27] with an initial learning rate
of 2 × 10−4 was used, where the T0 and Ti were set to 10 and 2, respectively.
All the deep learning models were trained with 630 epochs, using RandAugment
[11]. For the depth model Gd, we used the Norm-Free Network (F0 variant)
[7] as the encoder for its training high efficiency and performance. The decoder
in Gd followed [15,14]. We used a 2D nnU-Net [21] as the segmentation model
Gs trained with 512 resolution. When converting an estimated depth map (af-
ter masking) to a point cloud, we created the rays based on the detector size
and source-to-detector distance recorded in the DICOM header. We assumed a
pinhole camera with a regular viewing frustum without the skew.

Table 1. Evaluation results of point cloud reconstruction with and without shape com-
pletion. For shape completion, the healthy and diseased bones are reported separately.
256 , 512 , and 1024 refer to the X-ray resolutions. ※ denotes 3D reconstruction using
single-face depth maps. † denotes using pretraining. The mean(std.) of the metrics are
reported. ASSD, HD95, EMD, are reported in mm unit; CDl2 is in mm2 unit.

Point cloud evaluation ↓(↓)

Method Pelvis Femur
ASSD HD95 EMD CD-l2 ASSD HD95 EMD CDl2

256 Lindep
si ※ 4.78(0.85) 18.0(2.13) 8.55(1.15) 115(30.8) 5.54(1.52) 21.1(2.63) 9.36(2.09) 152(68.9)

256 Lindep
si 2.11(0.77) 5.82(2.08) 3.14(2.19) 21.2(21.5) 2.28(1.60) 5.75(4.10) 3.13(2.39) 25.6(61.9)

256 Ldep
casi 1.96(0.77) 5.38(2.09) 2.93(1.18) 18.9(21.2) 2.20(1.66) 5.60(4.39) 3.03(2.49) 25.4(68.7)

256 Lindep
casi 1.95(0.78) 5.36(2.10) 2.92(1.18) 18.8(21.3) 2.15(1.66) 5.49(4.38) 2.97(2.50) 24.7(68.5)

256 Lindep
casi † 1.93(0.77) 5.30(2.11) 2.88(1.17) 18.5(21.2) 2.12(1.66) 5.42(4.42) 2.93(2.50) 24.4(77.3)

512 Lindep
casi † 1.80(0.76) 4.93(2.07) 2.73(1.16) 16.9(20.7) 1.99(1.56) 5.14(4.17) 2.76(2.39) 21.8(60.0)

1024 Lindep
casi † 1.76(0.75) 4.82(2.02) 2.69(1.13) 16.3(19.3) 1.95(1.55) 5.07(4.19) 2.71(2.34) 21.2(61.3)

3D completion evaluation ↓(↓)
Fitting
target

Healthy pelvis Healthy femur
ASSD HD95 EMD CDl2 ASSD HD95 EMD CDl2

256 Lindep
si ※ 2.34(0.69) 5.95(2.14) 3.13(0.95) 19.7(17.6) 3.78(2.75) 9.21(6.87) 4.88(3.56) 72.3(148)

256 Lindep
casi 1.95(0.61) 5.06(1.99) 2.73(0.86) 13.9(15.2) 2.19(1.16) 5.40(2.86) 2.93(1.64) 19.3(35.3)

1024Lindep
casi † 1.91(0.60) 4.91(1.98) 2.66(0.85) 13.1(15.1) 2.11(1.15) 5.22(2.83) 2.85(1.60) 18.2(33.7)

Diseased pelvis Affected femur
256 Lindep

si ※ 2.55(0.88) 6.84(2.85) 3.50(1.27) 24.8(23.7) 4.56(3.05) 11.5(7.71) 6.11(4.22) 101(151)
256 Lindep

casi 2.15(0.80) 5.80(2.71) 3.03(1.18) 17.8(21.7) 2.62(1.68) 6.67(4.48) 3.54(2.45) 31.2(69.5)
1024Lindep

casi † 2.05(0.93) 5.63(2.80) 2.95(1.33) 17.5(37.8) 2.51(1.57) 6.40(4.19) 3.40(2.26) 28.1(61.2)

3.1 3D shape results without shape completion

Tab. 1 shows the evaluation results on the 3D shape reconstructed from esti-
mated depth maps from the models trained with different settings. The first-row
method (256 Lindep

si ※) that produced single-face depth maps with Lindep
si loss is
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regarded as the baseline. When predicting dual-face depth maps (256 Lindep
si )

with the same SI loss function significantly improved the 3D reconstruction per-
formance, reducing the femur mean ASSD and HD95 from 5.54 and 21.1 mm to
2.28 and 5.75 mm, respectively. Using a higher resolution, the mean ASSD and
HD95 for the femur were further improved to 1.95 and 5.07 mm, respectively.
This suggests that this generalization of the SI loss is effective. The proposed
CASI loss (256 Lindep

casi ) outperformed the conventional SI loss (256 Lindep
si ) on all

the metrics. We observe that the generalization without inter-depth-map pixel
dependency unexpectedly performed better. The behavior may be due to the size
(thickness) difference in objects (femur and pelvis), which resulted in different
error variance levels, influencing the training. In fact, we chose not to report the
results by the SI loss with pixel dependency Ldep

si , since the training is unstable
and often fails. The proposed CASI losses Ldep

casi and Lindep
casi were stable during

training. Fig. 2 shows the visual comparison between the methods on two rep-
resentative samples, where the proposed methods improved the reconstruction
quality significantly.

3.2 3D shape results with shape completion

We use 3D completion to demonstrate the effectiveness of estimating dual-face
depth. Tab. 1 shows the evaluation results grouped by the disease. The com-
pletion on the proposed dual-face method was significantly better in the fact
that much richer 3D information was accessible to fitting, as shown in Fig. 2
(a). The mean ASSDs for the healthy and diseased pelvis improved from 2.34
and 2.55 mm to 1.95 and 2.15 mm, respectively. The proposed dual-face-depth-
reconstructed 3D also reduced the fitting outliers significantly indicated by CDl2.
The mean CDl2 values were reduced from 72.3 and 101 mm2 to 19.3 and 31.2
mm2 for the healthy and diseased femur, respectively. We also observed that
the segmentation model failed in some regions of patients with unusual diseases,
which resulted in degradation in 3D reconstruction performance. Despite that,
our method showed robustness against bone deformation.

3.3 Depth map results

To better evaluate the proposed CASI loss, we also evaluated the estimated 2D
depth maps, which involved pixel-to-pixel correspondence to the ground truth
depth maps. For the femur, the conventional SI loss Lindep

si and the proposed
CASI loss Lindep

casi achieved a mean RMSE of 3.7 mm and 3.52 mm, respectively.
For the pelvis, CASI loss improved the mean RMSE from 4.8 to 4.5 mm. Fur-
ther, bone and muscle volume estimation from an X-ray image had been studied
previously by estimating 2D volume distribution [16]. Realizing that the 2D vol-
ume distribution is equivalent to thickness estimation at each pixel, our method
with dual-face depth estimation is naturally capable of producing volume dis-
tribution by subtracting a front depth map from a back depth map to estimate
bone volume. Using the proposed CASI loss, the Pearson correlation coefficient
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(PCC) between X-ray-derived and CT-derived pelvis volume was improved from
0.952 to 0.972 and further to 0.980 by pretraining and resolution scaling.

4 Conclusion and Summary

In this work, we propose a new approach to the fundamentally difficult problem
of 2D-3D reconstruction from a single X-ray image, termed 3DDX, where we
simultaneously estimate both the front and back faces of in-vivo bone structures
of interest. Furthermore, we proposed the generalization of conventional loss
to multi-depth-map supervision with improvement by utilizing known geometry
information. Through rigorous experiments with a large-scale X-ray dataset on
real patients, we demonstrate significant improvement in 3D reconstructions.
This work offers potential for many novel and established clinical applications,
such as posture estimation, low X-ray dose bone disease detection, diagnosis and
follow-up on widely available equipment even outside of hospitals and specialized
clinics, particularly in the developing world.
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