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Abstract. Deep learning has achieved remarkable success in the medical
domain, which makes it crucial to assess its vulnerabilities in medical
systems. This study examines backdoor attack (BA) methods to evaluate
the reliability and security of medical image analysis systems. However,
most BA methods focus on isolated downstream tasks and are considered
post-imaging attacks, missing a comprehensive security assessment of the
full-stack medical image analysis systems from data acquisition to analysis.
Reconstructing images from measured data for downstream tasks requires
complex transformations, which challenge the design of triggers in the
measurement domain. Typically, hackers only access measured data in
scanners. To tackle this challenge, this paper introduces a novel Learnable
Trigger Generation Method (LTGM) for measured data. This pre-imaging
attack method aims to attack the downstream task without compromising
the reconstruction process or imaging quality. LTGM employs a trigger
function in the measurement domain to inject a learned trigger into
the measured data. To avoid the bias from handcrafted knowledge, this
trigger is formulated by learning from the gradients of two key tasks:
reconstruction and analysis. Crucially, LTGM’s trigger strives to balance
its impact on analysis with minimal additional noise and artifacts in
the reconstructed images by carefully analyzing gradients from both
tasks. Comprehensive experiments have been conducted to demonstrate
the vulnerabilities in full-stack medical systems and to validate the
effectiveness of the proposed method using the public dataset. Our code
is available at https://github.com/Deep-Imaging-Group/LTGM.

Keywords: Backdoor attack, medical imaging, CT reconstruction, secu-
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1 Introduction

Deep learning (DL) has achieved significant success across various domains, with
extensive implementation in the medical fields [13]. However, the success of deep
⋆ Corresponding Author: yzhang@scu.edu.cn
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Fig. 1. The diagnosis pipelines of the proposed method with benign data and poisoned
data.

neural networks also brings numerous security and privacy concerns [18,16]. The
lack of transparency and interpretability in deep neural networks poses major
challenges for their deployment in practical medical analysis systems [3].

Recently, numerous works have demonstrated that various attack methods can
threaten the security and privacy of DL methods [17]. Among various attacks, the
backdoor attack (BA) has garnered significant attention. Typically, a model with
a backdoor functions normally with benign inputs. However, embedding a specific
trigger in the input activates the backdoor, leading to the malicious outcomes
attackers anticipate [10]. This threat has a serious impact on the economy and
health in DL-based medical diagnostics and decision support. For example, in
the U.S. healthcare system, DL-based algorithms significantly impact insurance
claims approvals, processing billions of medical claims, directing trillions of dollars,
and influencing treatment for millions of patients annually [6].

In practical scenarios, medical scanners (e.g., CT scanners), capture measured
data, such as sinogram data, which then requires complex physical reconstruction
transformations for downstream tasks [15]. Previous BA methods were not tailored
for full-stack medical analysis systems from data acquisition to analysis. These
methods are posting-imaging attack methods, which ignore the impact on the
quality of reconstructed images when triggers are injected into the measured data.
For example, as an early attempt, Gu et al. [7] poisoned training images by adding
a backdoor trigger, like a 3 × 3 white square, to benign images. These images,
along with normal training samples, were then used for training. Chen et al. [2]
proposed an invisible attack using a blending strategy, that merges the backdoor
trigger with benign images instead of directly stamping it. Recently, new backdoor
attack methods have been developed for medical fields [4]. Jin and Li explored
backdoor attacks in federated learning for medical image generation [8]. A recent
study, FIBA [5], opted to inject triggers into the Fourier frequency domain of
medical images. If hackers get unauthorized access to scanners, they can only
access the measured data. However, using these methods to inject backdoors
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into measured data will disrupt the imaging process. Therefore, it is critical to
investigate the vulnerabilities of such threats in medical image analysis systems
to ensure their reliability and security.

In this work, we focus on injecting triggers into the measurement domain
and propose an invisible BA method, dubbed as Learnable Trigger Generation
Method (LGTM). For clarity, Fig. 1 illustrates the diagnosis pipelines of the
proposed method using both benign data and poisoned data. It can be noticed
that the proposed LGTM is a pre-imaging attack method. In our threat model,
a hacker can threaten a system in two ways: by injecting a trigger into the
scanner or during the transmission process. Previous works assume that the
hacker has to gain unauthorized access to the downstream model, which is
typically well-protected locally [9]. Therefore, compared to previous works, our
assumption is more relaxed. As mentioned earlier, manually designing a trigger
in the measurement domain is challenging. However, LGTM offers a learnable
approach that circumvents the need for handcrafted prior knowledge. Specifically,
LGTM learns triggers by analyzing the gradients from both reconstruction and
downstream tasks. This involves evaluating the significance of each pixel in the
measured data for these tasks. This method can automatically design a trigger
that does not interfere with the reconstruction process, while remaining effective
in activating network backdoors, thus enabling an invisible BA. Then, the main
contributions of this paper can be summarized as:

– We introduce a new attack way for full-stack medical image analysis systems,
highlighting vulnerability through BAs in the measurement domain. To our
best knowledge, this work is the first attempt at designing pre-imaging
attacks.

– We propose a learnable trigger generation method with a high attack suc-
cess rate to reduce the need for prior knowledge and avoid destroying the
reconstruction process, thereby preserving image quality.

– Comprehensive experiments validate the effectiveness of the proposed method
in attacking the analysis systems.

2 Methodology

2.1 Problem Statement

A typical forward model for an imaging problem can be formulated as [11]:

y = A(x) + ϵ, (1)

where A : RN → RM is a forward measurement operator, x ∈ RN is the original
signal, N ≪ M in practice, and ϵ ∈ RM denotes measured noise. y is the measured
data. Generally, the ill-posed inverse problem introduces unexpected noise into y.

In this paper, we aim to achieve a high attack rate while maintaining the
reconstructed image quality. Then, our optimization objective is formulated as
follows:
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Fig. 2. The overview of the proposed LTGM.

argmin
T

(R(y + T )− x) + argmax
T

(M(R(y + T ))− l), (2)

where T is the learned trigger. R and M represent the reconstruction and the
downstream models, respectively. l denotes the downstream task label of x. The
main optimization objective can be summarized as: (i) To preserve image quality
and avoid compromising the reconstruction process; (ii) To effectively execute
an attack on the downstream model.

2.2 Learnable Trigger Generation Method

The proposed LTGM is composed of three key stages: warm-up benign training,
learnable trigger generation, and backdoor training. The overview of the proposed
method is illustrated in Fig. 2. At first, a benign training process aims to train
models for downstream tasks and establish relatively stable model parameters dur-
ing the warm-up stage. Due to the inherent randomness in random initialization,
the initialized model may struggle to accurately identify the significance of pixels
in the measured data for both downstream tasks and upstream reconstruction.
Consequently, warm-up training is crucial for the subsequent trigger learning and
generation.

Diagnosing directly from the measured data is impossible for doctors. There-
fore, a reconstruction process is essential to convert this data into images that
contain detailed anatomical information. As mentioned earlier, the complex phys-
ical transformation in medical imaging makes it difficult to manually design
triggers in the measurement domain without disrupting the reconstruction pro-
cess. Additionally, another objective is to inject a backdoor into benign data
to cause malicious predictions as intended by attackers. Considering the above
problems, this paper proposes a trigger learning method to balance the gradients
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of reconstruction and downstream tasks. At first, we calculate the reconstruction
gradient as follows:

Grec =
∂LMSE(R(y)− x̂)

∂R(y)
, (3)

where Grec is the reconstruction gradient map of the measured data, LMSE

denotes the mean squared error (MSE) loss and x̂ is the ground truth of the
reconstructed image.

To avoid disrupting the reconstruction process, we introduce the Salient
Pixel Selection Strategy (SPSS) which minimizes focus on non-critical pixels.
Specifically, we disregard pixels that are unimportant for the reconstruction task
and normalize the reconstruction gradient map to generate a heatmap as follows:

Hk(i, j) =

{
a/medk, if Gk

rec(i, j) ≥ medk
0, if Gk

rec(i, j) < medk
, (4)

where (i, j) is the coordinate index. Hk and Gk
rec denote the reconstruction

heatmap and gradient map of the k-th sample, respectively. medk denotes the
median number in Gk

rec.
While diagnostic details for various diseases are more apparent and distin-

guishable in the image domain, localizing crucial pixel positions to distinguish
diseases in the measurement domain is challenging. Additionally, after the warm-
up training phase, the model has almost reached convergence. Consequently, we
can calculate the gradient of downstream tasks of the warm-up learned model to
ascertain their importance without prior knowledge. Then, for the k-the sample,
the task gradient map can be calculated as follows:

Gk
task =

∂LTask(R(yk)− lk)

∂R(yk)
, (5)

where Gk
task denotes the downstream task gradient map of the k-th sample, yk

represents the k-th measured data, and lk is the label of the k-th sample. LTask

represents the task loss.
Then, we can obtain the personalized trigger for each sample by considering

both the task gradient map and the reconstruction heatmap. The process can be
formulated as follows:

Tk(i, j) = Hk(i, j)⊗Gk
task(i, j), (6)

where Tk is the personalized trigger of the k-th sample, and ⊗ denotes the
Hadamard Product operation.

Then, the final trigger is the aggregation of all personalized triggers, which is
defined as:

T =
K∑

k=1

Hk, (7)
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where T denotes the learned trigger, and K denotes the number of training
samples.

With the reconstruction heatmaps, we aim to minimize the impact of trigger
injection into the measurement domain on the reconstruction process. In this
way, the proposed LTGM ensures that the reconstructed image maintains its
quality, achieving invisible BAs, while still allowing the poisoned sample to be
diagnosed with the target label. Once we get T , we train the model with the
poisoned data to inject a backdoor into the model. The poisoned data can be
generated as follows:

y̌ = y + α · T , (8)

where α is the disturbance intensity, which is empirically set to 1× 106 in this
paper. y̌ denotes the poisoned version of y.

With the training process complete, in the implementation stage, the hacker
only needs to hack into the scanner and inject backdoors into benign samples.
Subsequently, the downstream model will yield the malicious results anticipated
by the hackers.

3 Experiment

3.1 Experiment Settings

Training Settings. For the sake of fairness, VGG [12] is selected as the backbone
in all methods, and SGD is adopted as the optimizer. The initial learning rate
is set to 0.01, and the weight decay is set to 1× 10−8. The batch size is set to
128. The images are resized to 256× 256, and the cross entropy loss is used to
optimize all methods. In this paper, filtered back-projection (FBP) is selected as
the reconstruction model, which is the most widely used in practice [14].
Evaluation Metrics. The success of BA methods can be generally evaluated
by Benign Accuracy (BA) and Attack Success Rate (ASR). BA represents the
accuracy of benign samples correctly classified. ASR denotes the proportion
of benign samples with an injected trigger that are predicted to target classes.
Additionally, Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
Measure (SSIM) are adopted as the image quality quantitative metrics.
Dataset. We validated the proposed method in the public dataset COVID-19
Low-Dose CT dataset [1]. This dataset contains scans of 104 COVID-19 positive
cases, and 56 normal cases, collected in Babak Imaging Center, Iran. In this
study, we randomly allocate 80% of the images to the training set and the rest
to the testing set.
Implementation Details. The proposed method and the compared methods
were implemented by PyTorch. The hardware used for this research included
an AMD Ryzen 7 5800X CPU @3.80 GHz, 32 GB of internal storage, and an
NVIDIA GTX 3080 Ti GPU.
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Fig. 3. The benign and poisoned measured data and corresponding reconstructed
images.

Table 1. The quantitative results of different methods.

Diagnosis Result Image Quality
BA ASR PSNR SSIM

Clean 99.83% / / /
BadNet [7] 99.54% 98.13% 16.17 0.6178
FIBA† [5] 99.30% 99.61% 37.86 0.9575
FIBA‡ [5] 99.67% 92.08% 34.05 0.9768

Ours† 99.76% 100.00% 5.31 0.0470
Ours 99.18% 98.38% 42.00 0.9790

3.2 Experimental Results

We compare the proposed LTGM with representative attack methods, BadNet [7]
and FIBA [5]. In our experiments, "Clean" means the model trained on the
benign dataset as the reference baseline. "FIBA†" and "FIBA‡" denote that the
triggers are the amplitude spectrum of one reconstructed image and the measured
data, respectively. "Ours†" refers to our proposed method that directly utilizes
Gk

task as the trigger, without taking the image quality into consideration.
In Fig. 3, we illustrate the benign measured data alongside its reconstructed

image, as well as several typical examples of poisoned measured data created
using different BA methods, with their corresponding reconstructed images. It
is obvious that previous methods did not exhibit substantial alterations in the
poisoned measured data when compared to benign measured data. However, they
overlooked the potential for introducing noise and artifacts into the reconstructed
images during the process of injecting triggers into the measurement domain.
However, "Ours†" focuses solely on the impact of the trigger on downstream tasks,
neglecting to keep the image quality of the reconstructed images. As a result, the
disparity between the injected backdoor measured images and benign measured
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Table 2. Ablation study about α in Eq. (8).

Diagnosis Result Image Quality
BA ASR PSNR SSIM

α = 1× 105 99.48% 2.70% 43.74 0.9882
α = 3× 105 98.36% 97.86% 43.56 0.9874
α = 5× 105 98.62% 98.64% 43.24 0.9859
α = 7× 105 98.93% 98.64% 42.80 0.9837
α = 1× 106 99.18% 98.38% 42.00 0.9790

images is quite pronounced, leading to a significant degradation in the quality of
the reconstructed images. By taking into account the potential impact of triggers
on reconstruction, our method is capable of achieving invisible BA, resulting in
no noticeable difference between the poisoned and benign reconstructed images.

The quantitative results are presented in Tab. 1. It is evident that all methods
can achieve satisfactory attack outcomes, with “Ours†" notably achieving a
100% ASR with slight degradation in BA. However, the metrics pertaining to
image quality have significantly declined. In contrast, our method manages to
maintain promising image quality with light BA degradation. Furthermore, the
comparative results with "Ours†" represent the effectiveness of incorporating the
reconstruction process into the trigger learning strategy to preserve image quality.
Therefore, in comparison to other approaches, our method achieves the most
favorable balance between attack efficacy and the image quality of the poisoned
data.

Furthermore, we validate the disturbance intensity α in Eq. (8), and the
quantitative results about the diagnosis and image quality can be found in Tab. 2.
It can be seen that if the parameter α is set to a very small value, activating
the trigger becomes challenging, leading to terrible attack performance. However,
as the value of α increases, there’s a noticeable uptick in ASR, but this comes
at the expense of image quality. As demonstrated in Fig. 3, even with a larger
perturbation parameter, our method can still accomplish invisible trigger injection.
Hence, in this study, to strike the balance between image quality and ASR, we
recommend setting α to 1× 106 empirically.

4 Conclusion

Existing methods can be concluded as post-imaging attacks, they mostly focus on
validating the vulnerability of the downstream task in the medical field. However,
in practical situations, imaging and downstream tasks are closely linked, but
related security analysis to the full-stack medical image analysis systems is empty.
In this paper, we focus on investigating the vulnerability and security of the
full-stack medical image analysis system and propose a pre-imaging attack way,
LTGM. We revealed that hackers only need to gain access to the scanner to inject
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backdoors to jeopardize the downstream analysis tasks. Specifically, we propose
a learnable trigger generation method to inject backdoors into benign measured
data. The trigger would not disrupt the reconstruction process. Moreover, our
technique ensures the attack’s invisibility; thus, the reconstructed images maintain
their high quality without the introduction of visible noise or artifacts. In future
works, we will focus on extending this work to other medical analysis tasks, such
as segmentation and prediction tasks.
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