
M2Fusion: Multi-time Multimodal Fusion for
Prediction of Pathological Complete Response in

Breast Cancer

Song Zhang1,2, Siyao Du3, Caixia Sun4, Bao Li5, Lizhi Shao1,2, Lina Zhang6,
Kun Wang7, Zhenyu Liu1,2, and Jie Tian1,4

1 CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese
Academy of Sciences, Beijing, China zhenyu.liu@ia.ac.cn, jie.tian@ia.ac.cn

2 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing,
China

3 Department of Radiology, The First Hospital of China Medical University,
Shenyang, China

4 School of Engineering Medicine, Beihang University, Beijing, China
5 Center for Biomedical Imaging, University of Science and Technology of China,

Hefei, China
6 Department of Radiology, The Fourth Affiliated Hospital of China Medical

University, Shenyang, China
7 Department of Breast Cancer, Guangdong Provincial People’s Hospital,

Guangzhou, China

Abstract. Accurate identification of patients who achieve pathologi-
cal complete response (pCR) after neoadjuvant chemotherapy (NAC) is
critical before surgery for guiding customized treatment regimens and
assessing prognosis in breast cancer. However, current methods for pre-
dicting pCR primarily rely on single modality data or single time-point
images, which fail to capture tumor changes and comprehensively repre-
sent tumor heterogeneity at both macro and micro levels. Additionally,
complementary information between modalities is not fully interacted.
In this paper, we present M2Fusion, pioneering the fusion of multi-
time multimodal data for treatment response prediction, with two key
components: the multi-time magnetic resonance imagings (MRIs) con-
trastive learning loss that learns representations reflecting NAC-induced
tumor changes; the orthogonal multimodal fusion module that integrates
orthogonal information from MRIs and whole slide images (WSIs). To
evaluate the proposed M2Fusion, we collect pre-treatment MRI, post-
treatment MRI, and WSIs of biopsy from patients with breast cancer
at two different collaborating hospitals, each with the pCR assessed by
the standard pathological procedure. Experimental results quantitatively
reveal that the proposed M2Fusion improves treatment response pre-
diction and outperforms other multimodal fusion methods and single-
modality approaches. Validation on external test sets further demon-
strates the generalization and validity of the model. Our code is available
at https://github.com/SongZHS/M2Fusion.
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1 Introduction

Patients with breast cancer achieving pCR could benefit from breast-conserving
surgery, even omitting surgery instead of breast mastectomy [1–3]. Accurate as-
sessment of pCR before surgery is essential for tailoring surgery plans and could
select patients with good prognosis in advance, which is an urgent need. How-
ever, the gold standard of pCR depends on the pathological results of surgical
specimens. Various explorations have been attempted to develop biomarkers for
predicting the response to NAC in patients with breast cancer, including imag-
ing techniques like pre-treatment Magnetic Resonance Imaging (MRI), post-
treatment MRI, and Whole Slide Imaging (WSI) [4–7]. While these studies have
produced encouraging results, the majority are restricted to a single modality
of data, neglecting complementary information between modalities [8]. Fusing
modalities containing fully orthogonal information would dramatically promote
predictive power and beyond single modality [9, 10]. For example, MRI pro-
vides insight into the anatomical structure and morphological characteristics of
tumors, while WSIs contain information about the tumor microenvironment,
complementing the information missed by MRI from a microscopic perspective.
Therefore, integrating orthogonally derived data such as MRI and WSI presents
an opportunity to discover and develop novel multimodal biomarkers for pre-
dicting treatment response.

Recently, most efforts have been concentrated on analyzing images collected
from a single time point. Some studies considered intratumoral heterogeneity or
introduced topological representations to utilize pre or post-treatment images
for pCR prediction [11, 12]. These possess inherent limitations for the purpose
of response prediction, as the impact of NAC is not taken into account. Impor-
tantly, imaging before and after treatment can dynamically reflect the regression
pattern and changes of the tumor from a macroscopic perspective [13, 14]. Sev-
eral studies have demonstrated that utilizing MRI at multiple time points could
enhance predictive power [15, 16]. However, simple concatenation and convolu-
tion operations failed to fully capture the differences in MRI scans before and
after treatment, as well as extract features associated with treatment response
from them.

To address the existing challenges, this paper proposes Multi-time Multimodal
Fusion (M2Fusion) to interact multi-time MRIs and WSIs for treatment re-
sponse prediction. The contributions of this work are as follows:

• We propose multi-time MRIs contrastive learning loss to extract representa-
tions reflecting treatment-induced tumor change by optimizing the distance
between pre- and post-treatment imaging features.

• We present a novel module for incorporating multimodal data like MRI and
WSI, where orthogonal information is integrated and features from different
modalities can be better exploited.



M2Fusion: Multi-time Multimodal Fusion 3

• To the best of our knowledge, this work is the first to use multi-time multi-
modal data simultaneously for treatment response prediction. The proposed
model yields enhanced predictive performance and maintains stable gener-
alization to the external dataset.

2 Related Work

2.1 Multi-time Imaging Prediction

Analyzing radiology images collected from a single time point can only pro-
vide the tumor’s static information and does not adequately capture the tumor
changes induced by NAC during treatment. To allow for a comprehensive analy-
sis, Huang et al. utilized radiomic features and deep learning features from pre-
NAC and post-NAC MRI to predict pCR [14].To better fuse radiomic features at
two time points, a disentangled representation learning was proposed [15]. These
two studies are mainly developed based on designed hand-crafted features. Jin
et al. extracted multi-scale features from UNet based on MRI before and after
treatment, leveraging tumor segmentation, and concatenated them to conduct
treatment response prediction [13]. Liu et al. integrated multi-time multi-scale
features through subtraction and global average pooling for pCR prediction [16].

2.2 Multimodal Fusion Prediction

Emerging evidence suggests that incorporating multimodal data can fully enrich
the description of tumor heterogeneity across multiple views, thereby boost-
ing the prediction performance [17–21]. Shah et al. concatenated radiomic fea-
tures and pathological features to improve risk stratification [22]. They also
proposed a model that takes the designed features of each modality as input
to obtain weighted scores and then integrated them to predict immunotherapy
response [23]. Additionally, inspired by the concept of cross-modal information
interaction in the visual question answering (VQA) system, a hierarchical multi-
modal co-attention transformer was developed to progressively integrate radiol-
ogy images and WSIs to obtain aggregation embedding [24]. A similar idea was
also applied to integrate preoperative ultrasound images and WSIs [25].

3 Methods

The overview of the proposed network M2Fusion is depicted in Fig. 1, compris-
ing three main modules: the multi-time MRIs contrastive learning module, the
WSIs feature extraction module, and the multimodal fusion module. Given the
i-th patient in the dataset, the observation is denoted by (Xi

pre, X
i
post, X

i
wsi, Y

i),
where Xi

pre,Xi
post,Xi

wsi and Y i represent pre-treatment MRI, post-treatment
MRI, WSIs before NAC treatment and treatment response classification label.
Y i = 1 indicates that the patient has achieved pathological complete response.
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WSIs feature extraction module takes Xi
wsi as the input and outputs WSI em-

beddings of different magnifications. The multi-time MRI contrastive learning
module takes multi-time MRI embeddings as the input. The multimodal fusion
module aggregates WSI embeddings and MRI embeddings to integrated features
for final pCR prediction. Now we delve into different modules in the following
subsections.

Fig. 1. Overview architecture of our proposed M2Fusion model. A. M2Fusion with
two key components: the multi-time MRIs contrastive learning loss and the orthogonal
multimodal fusion module. B.Graphical demonstration of the multi-time MRIs con-
trastive learning training process. After training, from step 1 to step k,Ei

pre, E
i
post of

pCR patients are pushed away, and Ei
pre, E

i
post of non-pCR patients are pulled close.

C. The illustration of orthogonal multimodal fusion module.

3.1 Multi-time MRIs Contrastive Learning

For the MRI scans taken before and after treatment, we observe that after neoad-
juvant chemotherapy, there are no invasive residual tumors visible on the MRI
scans of patients who achieve pCR. In some pCR cases, there might be cancer
in situ on the post-treatment MRI. However, for patients who do not achieve
pCR, tumors do not completely regress, and tiny tumors are still present on the
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MRI scans after treatment. That’s to say, in the case of pCR patients, the com-
plete regression of the tumor results in substantial changes between the MRI
scans before and after treatment, leading to a lower similarity between them.
Conversely, for non-pCR patients, the presence of residual tumors leads to a
relatively higher similarity between the MRI scans before and after treatment.
Inspired by contrastive learning, therefore, we hypothesize that the image fea-
tures of pCR patients before and after treatment should ideally exhibit significant
dissimilarity. Conversely, for non-pCR patients, the image features before and
after treatment should ideally be as similar as possible.

Based on the observation and the hypothesis, we propose a multi-time MRI
contrastive learning loss function Lcont, aimed at learning representations by
minimizing the distance between pre-treatment MRI and post-treatment MRI
for non-pCR patients, while simultaneously maximizing this distance for pCR
patients. In detail, 3D ResNet [26] is employed to obtain Ei

pre = fpre(X
i
pre) =

ResNet(Xi
pre), E

i
post = fpost(X

i
post) = ResNet(Xi

post) respectively for a given
patient, where fpre, fpost share similar network architecture but have different
network weights. Then, Lcont is utilized for pushing Ei

pre, E
i
post of pCR patients

away and pulling Ei
pre, E

i
post of non-pCR patients close. It can be formulated as

Lcont =
∑
i

(1− Y i)MSE(Ei
pre, E

i
post) + Y iCOS(Ei

pre, E
i
post) (1)

where MSE(·) represents mean-squared loss and COS(·) represents cosine sim-
ilarity. Finally, we integrate Ei

pre, E
i
post by bilinear pooling to obtain multi-time

MRI representations Ei
MRI for multimodal fusion later.

Ei
MRI = Bilinear(Ei

pre, E
i
post) = Ei

preAEi
post + b (2)

where A is a trainable parameter and b is a bias term.

3.2 WSIs Feature Extraction

To fully leverage WSI-level labels and gigapixel WSIs, we adopt an attention-
based multiple-instance learning approach [27]. First, tissue regions are automat-
ically segmented. Then, 512×512 patches are cut from the segmented foreground
contour at the magnification of 40× and 10×. We use pre-trained vision trans-
formers [28] to extract patch features at different magnifications, denoted as
P i
40 = {pij40} ∈ RiJ×d and P i

10 = {pik10} ∈ RiK×d, where iJ and iK are the total
number of patches at 40× and 10× for a patient. Finally, patch features are
integrated by learned attention score a

ij
40 and aik10 to obtain WSIs embeddings at

40× and 10× for a patient.

Ei
40 =

∑
j

a
ij
40p

ij
40 Ei

10 =
∑
k

aik10p
ik
10 (3)
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3.3 Orthogonal Multimodal Fusion

Currently, the fusion of MRIs and WSIs primarily employs early fusion and
late fusion strategies. Both strategies typically overlook the interactions across
modalities. Attention-based fusion modules take this into consideration [24, 25].
Inspired by that, we argue that incorporating orthogonal information will en-
hance the representation ability and facilitate downstream tasks [9, 29]. Based
on that, we propose an orthogonal multimodal fusion module (abbreviated as
OMF), which is illustrated in Fig.1.C.

During the attention, each element in QKT measures the orthogonality be-
tween qi and kj , with larger values indicating greater similarity. qikTj = 0 means
that qi and kj are orthogonal, indicating that they are perpendicular in feature
space with the lowest linear correlation. A high weight score should be assigned
to them, and 1− qik

T
j

∥qi∥∥kj∥ could satisfy this. For the fusion of EWSI and EMRI ,
the multiplication of a query Q from the WSIs embedding EWSI and a key K
from the MRIs embedding EMRI is used to find kj orthogonal to qi and assign
high weight score. Then, the weight score is utilized for the feature aggregation
of EMRI . This operator can be formulated as:

Hf = OrthAttention(EWSIWq, EMRIWk, EMRIWv)

=
(
J −

∣∣EWSIWq(EMRIWk)
T
∣∣)EMRIWv

=
(
J −

∣∣QKT
∣∣)V

=

(
J −

∣∣∣∣∣
(

q1
∥q1∥

, · · · , qn
∥qn∥

)(
k1

∥k1∥
, · · · , km

∥km∥

)T
∣∣∣∣∣
)
V

(4)

Where J is a matrix with all elements equal to 1, Wq,Wk,andWv are trained
weight matrices, Q is the query generated from EWSI , and K and V are the
key and value generated from EMRI . For a given patient, we have Ei

MRI , E
i
40

and Ei
10. Integrating WSI embeddings and MRI embeddings at different magni-

fications through the orthogonal multimodal fusion module, we obtain Hi
f40

and
Hi

f10
.

Hi
f40 = OrthAttention(Ei

40Wq, EMRIWk, EMRIWv)

Hi
f10 = OrthAttention(Ei

10W
′
q, EMRIW

′
k, EMRIW

′
v)

(5)

It should be noted that before EMRI is input into the orthogonal multimodal
fusion module [30], it is passed into the correlative self-attention mechanism.
Finally, we concatenate Hi

f40
, Hi

f10
,Ei

40 and Ei
10 to obtain Hi

f for classification.

Hi
f = Concat(Hi

f40 , H
i
f10 , E

i
40, E

i
10) (6)

4 Experiments

4.1 Datasets and Implementation Details

Data Collection In this study, to evaluate our proposed approach, patients
with breast cancer from our two collaborating hospitals were collected between
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2019 and 2023, denoted as the in-house cohort A and the in-house cohort
B. All patients underwent neoadjuvant chemotherapy according to the guide-
lines. Each patient includes pre-treatment dynamic contrast-enhanced MRI(DCE-
MRI), post-treatment DCE-MRI, pre-treatment WSIs of core biopsies, and pCR
labels. The phase with peak tumor enhancement at DCE-MRI was used. pCR
is defined as no residual invasive cancer in both the breast and axillary lymph
nodes, while cancer in situ was allowed in some cases. The in-house cohort A
consists of 375 patients, including 134 patients achieving pCR, and 241 non-pCR.
The in-house cohort A is randomly split into internal training and validation sets
at a 4:1 ratio. The in-house cohort B consists of 204 patients from another
different hospital, including 74 patients achieving pCR, and 130 non-pCR. The
in-house cohort B acts as an external set to further demonstrate the performance
of the proposed method.

Implementation and Evaluation We use the cross entropy loss and Lcont to
train our model. To avoid over-fitting, we also impose an l1-norm and l2-norm
to the learnable network weight Θ. Finally, the loss function can be formulated
as follows:

L = Lcont + Lce + λ1∥Θ∥1 + λ2∥Θ∥2 (7)

Lcont is only used during training. The input size of MRI is 48×96×96 and the
patch size of WSIs is 512 × 512. To train M2Fusion, we use SGD optimization
with a learning rate of 0.01 and employ a poly learning rate policy. All code was
implemented in PyTorch and executed on a NVIDIA RTX 4090 GPU. To enable
end-to-end training of our model, a batch size of 1 with 32 steps for gradient
accumulation is utilized. The area under the receiver operating characteristic
curve (AUC) is employed to evaluate the performance of treatment response
prediction.

4.2 Results

Ablation Study: Multi-time MRIs contrastive learning loss (Lcont) and OMF
are two key components in M2Fusion. In Table 1, we investigate the performance
of M2Fusion without Lcont and OMF respectively. Following results are observed:
(1) Incorporating orthogonal information from MRIs and WSIs enhances the
performance of M2Fusion, (2)Lcont enables M2Fusion to extract better repre-
sentations of multi-time MRIs, which is beneficial to the classification ability of
M2Fusion, (3) both Lcont and OMF contribute to the improved predictive power
of M2Fusion.

Comparison to other methods: To evaluate the performance of our model,
we compare M2Fusion with current multimodal fusion models, including Con-
cat [22], SFusion [31], HMCAT [24]. Additionally, we compare M2Fusion with
models that utilize single modality data, where MMRI is developed based on
multi-time MRIs with Lcont and MWSI is developed based on WSIs. All of the
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Table 1. Ablation Study on model components with the AUC metric on internal
validation set and external test set

Baseline OMF Lcont
AUC

Internal Validation Set External Test Set
✓ 0.6975 0.7129
✓ ✓ 0.7052 0.7403
✓ ✓ 0.7299 0.7415
✓ ✓ ✓ 0.7346 0.7992

experiments are conducted on the same training/validation split. As shown in
Table 2, M2Fusion achieves an AUC of 0.7346 in the internal validation set, su-
perior to other multimodal fusion methods and single modality methods. Com-
pared with SFusion, which aggregates each modality with learnable assigned
weights, M2Fusion stands out by considering modal interaction. M2Fusion out-
performs attention-based methods that consider modal interaction, such as HM-
CAT, demonstrating the validity of the assumption that extracting orthogonal
representations can improve model performance. The findings demonstrate that:
(1) our method enhances modal interaction, particularly through the extraction
of orthogonal representations; (2) we extract more informative representations of
tumor changes from multi-time MRI, which is beneficial for predicting treatment
response; and (3) leveraging more complementary features from multimodal data
can further improve performance.

Table 2. Comparison with the AUC metric on internal validation set and external test
set

model AUC
Internal Validation Set External Test Set

MMRI 0.6968 0.6950
MWSI 0.6605 0.6917
Concat [22] 0.6975 0.7129
Concat w/ Lcont 0.7299 0.7415
HMCAT [24] 0.7168 0.7023
SFusion [31] 0.6906 0.7093
M2Fusion 0.7346 0.7992

Generalization on external set: To further validate the effectiveness and
generalization of M2Fusion, we conduct experiments on the external test set
without any additional training. As shown in Table 2, M2Fusion achieves an AUC
of up to 0.7992, which is 8.0% higher than the second-best model. This suggests
that our model maintains satisfactory predictive performance when generalizing
to datasets from other hospitals, with no significant decline. Results in Table 1
also reveal the validity of two key components in M2Fusion.
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5 Conclusion

In this work, we propose M2Fusion model to fuse multi-time multimodal imaging
data for treatment response prediction in patients with breast cancer. M2Fusion
utilizes multi-time MRIs contrastive learning to extract MRI features reflecting
NAC-induced tumor change and applies orthogonal multimodal fusion to incor-
porate orthogonal information from multimodal features. We collected multi-
time multimodal data consisting of 579 patients from different hospitals to
demonstrate the performance of our model. Experiments reveal that M2Fusion
outperforms state-of-the-art fusion methods as well as single-modality models.
Besides, M2Fusion still maintains strong generalization ability and maintains
satisfactory predictive performance on the external validation.
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