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Abstract. There have been significant advancements in analyzing reti-
nal images for the diagnosis of eye diseases and other systemic conditions.
However, a key challenge is multi-disease detection, particularly in ad-
dressing the demands of real-world applications where a patient may
have more than one condition. To address this challenge, this study in-
troduces a novel end-to-end approach to multi-disease detection using
retinal images guided by disease causal estimation. This model leverages
disease-specific features, integrating disease causal relationships and in-
teractions between image features and disease conditions. Specifically,
1) the interactions between disease and image features are captured
by cross-attention in a transformer decoder. 2) The causal relationships
among diseases are automatically estimated as the directed acyclic graph
(DAG) based on the dataset itself and are utilized to regularize disease-
specific feature learning with disease causal interaction. 3) A novel reti-
nal multi-disease dataset of 500 patients, including six lesion labels, was
generated for evaluation purposes. Compared with other methods, the
proposed approach not only achieves multi-disease diagnosis with high
performance but also provides a method to estimate the causal relation-
ships among diseases. We evaluated our method on two retinal datasets:
a public colour fundus photography and an in-house fundus fluorescein
angiography (FFA). The results show that the proposed method outper-
forms other state-of-the-art multi-label models. Our FFA database and
code have been released 1.

Keywords: Retinal image · Multi-disease detection · Disease causal es-
timation · Disease-specific features · Disease-feature interaction.

1 Introduction

Retinal images are essential in computer-aided diagnosis to evaluate conditions
such as glaucoma [5], cataracts [26], and age-related macular degeneration [13].
1 https://github.com/davelailai/multi-disease-detection-guided-by-causal-estimation.
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Deep learning has shown remarkable potential for specific disease detection [10,25,6,21]
with the assumption that each instance corresponds to only a specific disease.
However, the complexity of retinal diseases in the real world, often involving
multiple conditions in a single patient [8], makes accurate diagnosis difficult.
Therefore, the demand for deep learning techniques to handle retinal multi-
disease detection is growing evident in clinical settings.

In recent decades, multi-label classification of retinal images has gained sig-
nificant attention. This work falls within the category of label-specific feature
modeling, which has emerged as a mainstream. In these methods, the label co-
occurrence or the interaction between label and image features is utilized to guide
label-specific feature generation. For example, in the label co-occurrence mod-
eling [3,11,22], they leveraged dependencies between labels as prior knowledge,
employing graph-based methods to guide model inference. In the transformer-
based methods [12,16,23,17], the interactions between label embeddings and im-
age spatial features were captured to learn effective label-specific features.

While the aforementioned label-specific methods have yielded promising re-
sults, they encounter several limitations. On the one hand, these methods of-
ten consider only one aspect of correlation; for instance, the label co-occurrence
method overlooks the feature-disease interaction, while transformer-based meth-
ods miss the label co-occurrence. On the other hand, in label co-occurrence
methods [3,11,22], the statistical graph constructed from a small dataset may
introduce a frequency-bias issue, potentially leading to overfitting [22,14,19]. Ad-
ditionally, this label co-occurrence fails to capture the causal relationships be-
tween labels [20]. These causal associations were proved in [2], where the authors
stated that Type-2 diabetes mellitus might cause senile cataracts, glaucoma, and
disorders of the optic nerve and visual pathways.

Inspired by these insights, we propose a multi-disease detection in retinal im-
ages guided by causal estimation. Our approach integrates both disease causal
relationships and interactions between image features and disease conditions.
More specifically, cross-attention in transformer-based models is employed to
capture the interaction between retinal image features and disease conditions.
Furthermore, a causal matrix among the diseases is learned as a directed acyclic
graph (DAG) and serves as an auxiliary task, facilitating the exploration of
causal relationships between diseases, and then regularizing the disease-specific
feature learning with disease causal interaction. In this case, the disease-specific
features in our method are more informative and discriminative, thereby enhanc-
ing detection performance. Additionally, the estimated causal matrix provides
insights to explore causal relationships among diseases.

2 Method

In this section, the notation of multi-disease detection based on disease-specific
feature learning is introduced, and then a brief overview of the proposed method
and its key modules are described in detail.
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Fig. 1. Overall architecture and details of the proposed method. (a) Pipeline of the
proposed model, ST , TP , L, NP are names of the disease. (b) Transformer decoder.
(c) Framework of the causal estimation module.

Notations. In the context of a retinal image X containing multiple diseases,
multi-disease detection aims to predict the presence of each disease. Disease-
specific feature learning facilitates the extraction of unique features for each
disease category, enhancing classification accuracy. Let K denote the total num-
ber of disease categories, and the corresponding labels of X are denoted as
Y = [y1, ..., yK ], where yk ∈ {0, 1} and k = 1, ...,K represents a discrete binary
indicator. The disease-specific features are represented as Q = [q1, ..., qK ], where
qk ∈ R1×C and C is the number of feature channels. Specifically, yk = 1 if the
retinal image X exhibits the kth disease; otherwise, yk = 0. Utilizing X as input,
the multi-disease detection method predicts the probabilities P of each disease
category being present.

2.1 Overview of proposed method

The framework is illustrated in Fig 1 (a). First, transformer-based method
[12,16] was employed to acquire an initial disease-specific feature, capturing the
interaction between image features and diseases. Then, a causal matrix was
estimated to regulate the disease-specific feature learning process, under the
assumption that features of a given disease can be modeled based on its parents’
diseases using logistic regression. In this setup, disease causal relationships can
be estimated from the data, and the disease-specific features with this constraint
account for disease causal interactions, effectively guiding the model toward more
consistent classification outcomes.
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2.2 Disease-Specific Feature Learning

In our method, the disease-specific features are learned by considering both the
interaction between image spatial features and diseases, as well as the causal
relationships among diseases.

Disease-Feature Interaction. Our proposed method adopts a transformer-
based approach [12,16], as depicted in Fig 1. (a-b). Given a retinal image X,
it initially undergoes processing through a feature extraction network to ex-
tract spatial features F0 ∈ Rm×n×c reshaped as F0 ∈ Rmn×c. Our approach is
backbone-agnostic, allowing the utilization of any feature extraction architec-
ture. Here, we employed ResNet50 [7]. Subsequently, to capture the interaction
between image features and disease embedding, the standard transformer de-
coder architecture was utilized with the F0 and disease embedding Q0 ∈ RK×c

as input. Thus, the disease-specific feature can be calculated following Equa-
tion 1.

Self-Attention: Q1 ← MultiHeadAttn(Q0, Q0, Q0)

Cross-Attention: Q1 ← MultiHeadAttn(Q1, F0, F0)

Feed Forward Network: Q1 = FFN(Q1)

(1)

where Q1 ∈ RK×C represents the disease-specific features, incorporating disease-
feature interactions. C represents the feature channel. The initial values of Q0

are randomly initialized and set as learnable parameters.
Disease Interaction in Causal Perspective To address the unreliable

statistical relationships among diseases as observed in prior works [3,11,22], and
to harness the causal relationships among diseases, we propose a method to esti-
mate disease causality and unveil underlying disease connections. Specifically, we
proposed a directed acyclical graph (DAG) learning approach, assuming a causal
DAG exists among initial disease-specific features Q1. This approach considers
disease causality, where the feature qi for disease i can be modeled according to
its parents (diseases that might cause the disease i) via logistic regression based
on Equation 2. Regularizing disease-specific features with this constraint ac-
counts for disease-causal interaction.

qi = fi(Pa(qi), ui), i ∈ K (2)

where Pa(qi) represents the parents of qi, and ui are some random noise variables.
fi represents logistic regression.

In practice, after obtaining initial disease-specific feature Q1 ∈ RK×C . Let
A(W) ∈ RK×K represent the DAG with zeros on the diagonal, where Wij de-
notes the causal relationship strength from disease i to disease j. Thus, the
disease-specific feature can be updated by the weighted adjacency matrix A(W)
according to the Equation 3.

Q = WQ1 (3)

Where Q represents the disease-specific feature that incorporates both the in-
teraction between image spatial features and diseases, as well as the causal in-
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teractions among diseases. In this scenario, learning the causality DAG becomes
the primary challenge, which is addressed in Section 2.3.

2.3 Causal Relationship Estimation

Inspired by the work of Zheng et al. [24] on learning linear DAGs through con-
tinuous optimization, we adopt a similar approach for learning the DAG W̃, as
described by Equation 4.

W̃ ∈ argmin
W

(λ(LSEM + ∥W∥1) +RDAG(W)) (4)

where λ is a hyper-parameter to balance the two items, LSEM = ∥Q1−WQ1∥22
is the score function, indicating the causal relationship that the one disease-
specific feature can be modelled according to its parents. ∥W∥1 is the L1 nom
of W, promotes sparsity in W̃, RDAG(W) is the DAG regularization loss.

We propose to learn a causal DAG in a nonlinear setting, where the DAG is
parameterized by a 2-layer feed-forward neural network (represented as f) with
Sigmoid activation, and the Q can be represented as Q = Sigm(f(Q1, w)), as
shown in Figure. 1(c). In the causal structure modeling, after passing through a
linear layer with parameter size w ∈ RK×Kd (where d is the channel of DAG and
set as 30) and applying a sigmoid activation function to introduce nonlinearity,
Q1 can be reconstructed as Q̃1 ∈ RC×d×K . Subsequently, the reconstructed
label-specific feature Q ∈ RC×K is obtained by applying a Conv1d operation
with a kernel size of 1. Thus the LSEM can be rewrite as LSEM = ∥Q1 −
Sigm(f(Q1, w))∥22, and W̃ can be calculated by optimizing Equation 5

W̃ ∈ argmin
W

(λ(∥Q1 − Sigm(f(Q1, w))∥22 + ∥w∥1) +RDAG(W)) (5)

with the DAG loss introduced in [1], writing RDAG(W) as Equation 6

RDAG(W) = −logdet(sI −W ◦W) +K log s (6)

where W = ∥w∥2 is the learned causal matrix, I is the identity matrix, s is
a given scalar (setting as 1 here), and ◦ denotes the element-wise Hadamard
product, K is disease categories. logdet is the log-determinant function.

2.4 Loss Function

In this paper, the model was trained end-to-end, and the overall loss function
was defined as Equation 7:

Loss = Lc + λ(LSEM + ∥w∥1) +RDAG(∥w∥2) (7)

where Lc is simplified asymmetric loss [15] for multi-label classification.
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Table 1. Details of the LID-FFA dataset, including the number of positive (negative)
images for each pathology.

L TP ST SH NP VA Total
Train 3371(418) 1773 (2016) 2953 (836) 1878 (1911) 1451 (2338) 2108(1681) 3789
Val 459 (87) 231 (315) 400 (146) 237 (309) 212 (334) 277 (269) 546
Test 1014 (86) 514 (586) 922 (178) 595 (505) 453 (647) 696 (404) 1100

3 Experiments

3.1 Dataset and Evaluation

Two datasets are utilized to validate the performance of the proposed method,
the OIA-ODIR [9] and our in-house Lesion Intelligent Detection in Fundus Flu-
orescein Angiography dataset (LID-FFA).

OIA-ODIR [9] is the first internationally available dataset for multi-disease
detection based on binocular fundus images, comprising 10,000 fundus pho-
tographs from 5,000 patients with eight types of ocular disease classifications.
The dataset is divided into three subsets: training, off-site testing, and on-site
testing, with 3,500, 500, and 1,000 patients, respectively. In our setting, the
on-site is utilized for validation, and the off-site is utilized for testing.

LID-FFA is a multi-lesion detection dataset, consisting of 5435 fundus fluo-
rescein angiograph (FFA) images from 500 patients. It includes six pathological
features: Leakage (L), Transmission and Pooling (TP), Staining (ST), Shadow-
ing (SH), Non-Perfusion (NP), and Vessel Abnormality (VA). Each image may
contain more than one lesion pathology. Manual labeling was performed by two
junior ophthalmologists at the image level, with any discrepancies resolved by
a senior ophthalmologist to make the final arbitration. The FFA images were
acquired by Spectralis HRA+OCT (Heidelberg Engineering, Heidelberg, Ger-
many). In our setup, the dataset was split randomly based on patients into sets
of 350 for training, 50 for validation, and 100 for testing. Further details are
provided in Table 1. Several FFA cases are depicted in supplementary.

Data pre-processing. The original images were resized to a uniform image
resolution of 512 × 512, followed by random cropping to obtain patches of size
448× 448, and random horizontal flip.

Evaluation metrics. We use macro average precious (MAP), macro average
recall (MAR), macro average F1-score (MAF1), mean average area under the
receiver operating characteristic (mAUC) and mean average precision (mAP) for
the evaluation. The threshold is set as 0.5 for all metrics.

3.2 Implementation Details

The public framework mmpretrain [4] was used to implement all our deep neural
networks. All the experiments were run on a NVIDIA Tesla A100 with 80 G
memory. The stochastic gradient descent (SGD) optimizer is applied to train
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Table 2. Results of the comparison and the ablation experiments (%), text in bold or
red indicates the best performance among all comparison methods, while text in red
denotes an improvement over the corresponding baseline in the ablation experiments.

OIA-ODIR LID-FFA
Model MAP MAR MAF1 mAP mAUC MAP MAR MAF1 mAP mAUC

Resnet50 [7] 17.95 92.04 29.29 47.49 74.61 80.23 83.44 81.59 76.30 66.94
AsyLoss [15] 40.26 72.16 49.62 57.06 79.97 81.44 87.42 83.76 87.22 76.94
GCN [11] 33.28 66.87 42.21 54.39 78.50 80.03 88.64 83.94 85.47 74.80

dyGCN [22] 45.51 70.10 53.70 58.09 80.34 83.15 83.99 83.46 87.47 76.63
Q2L [12] 41.62 67.01 52.73 50.13 79.68 83.62 85.70 84.59 87.69 76.73

Q2L causal 43.53 70.32 51.69 60.32 81.69 83.67 84.87 84.17 88.60 77.65
MLDecoder [16] 42.23 73.18 50.22 60.85 79.29 83.09 86.66 84.78 88.24 76.84

ML causal 42.55 80.00 50.46 59.59 82.51 83.85 86.17 84.93 86.88 78.02

Fig. 2. AUC Analysis for separate disease. The disease indication in OIA-ODIR is
as follows: diabetes retinopathy (D), glaucoma (G), cataract (C), age-related macular
degenerate (A), hypertension (H), myopia (M), and other abnormalities (O).

the networks. The initial learning rate is set to 0.005 with the onecycle learning
rate decay policy [18]. The epoch was set as 100 with batch size as 64.

3.3 Comparison and Ablation Experiments

We compared our method with ResNet50 [7], an asymmetric loss [15] designed for
unbalanced datasets, GCN-based methods [3,22] designed for label-label correla-
tion, and Transformer-based methods [12,16] designed for label-feature interac-
tion. To ensure a fair comparison, we replaced the feature extraction backbone
of each method with ResNet50 [7], initialized with weights pretrained on the
ImageNet-1k dataset. To evaluate the efficiency and generalization of our pro-
posed method, we utilized Q2L [12] and ML-Decoder [16] as the disease-feature
interaction component in Fig 1 (a). The average performance is summarized in
Table 2. Our proposed method (Q2L causal and ML causal) exhibits supe-
rior average performance compared to other methods, particularly in terms of
mAUC, where it achieves the best results on both datasets. Regarding the abla-
tion of the proposed causal estimation, when compared with the baseline (Q2L
and MLDecoder), combining the causal estimation in our proposed methods
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Fig. 3. Analysis of Channels in Causal Matrix.

(Q2L causal and ML causal) yields improved performance across almost all
metrics. Moreover, the AUC for each disease is illustrated in Fig 2, demonstrat-
ing superiority on most tasks.

3.4 Analysis of Channels in Causal Matrix

In the causal estimation section depicted in Fig 1 (c), we investigated the pro-
found impact of channel d on multi-disease detection performance by varying
its values to 10, 30, 50, and 100 within the Linear layer architecture. Subse-
quently, we trained both the Q2L causal and ML causal models with each
configuration and evaluated their performance using the mAUC. The results
are presented in Fig 3. It can be observed that the proposed method achieves
optimal performance when the channel of the causal matrix d is set to 30.

3.5 Analysis of Causal Estimation

To explore the causal matrix within our proposed method, we evaluate the causal
matrix W learned from each dataset using the GCN-based approach [11]. More
precisely, we utilize the disease co-occurrence matrix statistics obtained from
the training dataset as a reference. To be a fair comparison, diagonals in the
disease co-occurrence matrix are designated as zeros. Subsequently, we replace
this disease co-occurrence matrix with our learned causal matrix and proceed to
train the model on the corresponding datasets. For example, the causal matrix
learned from OIA-ODIR was utilized to train the model on the OIA-ODIR. The
results are presented in Table 3. The findings demonstrate that after substitut-
ing the disease co-occurrence matrix with the causal matrix learned from our
method, the classification performance exhibits a significant improvement across
most evaluation metrics. This result proves that the proposed causal estimation
method efficiently captures the causal relationship between diseases to some ex-
tent. The visualization of the causal matrixes are generated in supplementary.

4 Conclusion

In this paper, we propose a method for multi-disease detection in retinal im-
ages that leverages disease-specific features and integrates disease-causal rela-
tionships. Cross-attention in the transformer model was employed to capture
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Table 3. Exploration of the causal matrix, GCN means that the disease co-occurrence
matrix with diagonals set as zero serves as the adjacency matrix (graph). GCN+QL
(GCN+ML) means the causal matrix learned in Q2L causal (ML causal) is utilized.

OIA-ODIR LID-FFA
Model MAP MAR MAF1 mAP mAUC MAP MAR MAF1 mAP mAUC

GCN [11] 33.28 66.87 42.21 54.39 78.50 80.03 88.64 83.94 85.47 74.80
GCN+QL 47.24 68.60 54.87 57.61 80.66 84.20 83.46 83.71 87.51 75.94
GCN+ML 40.85 67.10 49.19 55.87 79.63 83.06 87.30 84.97 87.31 77.51

interactions between images and diseases, and a causal estimation method was
introduced to learn causal relationships among diseases. Experimental shows
that the proposed method demonstrates improved multi-disease detection per-
formance, and the estimated causal matrix provides insights into disease rela-
tionships. Additionally, we published a multi-lesion detection dataset in FFA.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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