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Abstract. Early screening and classification of Age-related Macular De-
generation (AMD) are crucial for precise clinical treatment. Currently,
most automated methods focus solely on dry and wet AMD classifica-
tion. However, the classification of wet AMD into more explicit type 1
choroidal neovascularization (CNV) and type 2 CNV has rarely been
explored, despite its significance in intravitreal injection. Furthermore,
previous methods predominantly utilized single-modal images for dis-
tinguishing AMD types, while multi-modal images can provide a more
comprehensive representation of pathological changes for accurate diag-
nosis. In this paper, we propose a Modal Prior Mutual-support Network
(MPMNet), which for the first time combines OCTA images and OCT se-
quences for the classification of normal, dry AMD, type 1 CNV, and type
2 CNV. Specifically, we first employ a multi-branch encoder to extract
modality-specific features. A novel modal prior mutual-support mecha-
nism is proposed, which determines the primary and auxiliary modalities
based on the sensitivity of different modalities to lesions and makes joint
decisions. In this mechanism, a distillation loss is employed to enforce
the consistency between single-modal decisions and joint decisions. It can
facilitate networks to focus on specific pathological information within
individual modalities. Furthermore, we propose a mutual information-
guided feature dynamic adjustment strategy. This strategy adjusts the
channel weights of the two modalities by computing the mutual infor-
mation between OCTA and OCT, thereby mitigating the influence of
low-quality modal features on the network’s robustness. Experiments on
private and public datasets have demonstrated that the proposed MPM-
Net outperforms existing state-of-the-art methods.
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Fig. 1. OCTA (top row) and OCT (second row) images showing a normal eye and eyes
affected by AMD. Noise interference is indicated by arrows, while lesions are circled.
A sequence of OCT B-scans from an eye with type 2 CNV type (bottom row).
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1 Introduction

AMD is a major cause of blindness worldwide [1]. It can be classified into dry
AMD, characterized by drusen and geographic atrophy, and wet AMD, distin-
guished by the growth of CNV beneath the retina. The wet AMD can be again
divided into type 1 CNV and type 2 CNV depending on whether the CNV breaks
through the retinal pigment epithelium (RPE) layer [2]. Treatment approaches
for AMD vary across different types. For instance, clinicians tailor treatments to
the corresponding CNV types targeting the RPE layer, which aims to minimize
cellular damage and postoperative visual function impairment [3]. Thus, precise
classification of AMD is crucial for disease analysis and surgical intervention.

In clinical practice, AMD diagnosis relies on retinal imaging techniques such
as color fundus photography (CFP), fluorescein fundus angiography (FFA), and
optical coherence tomography (OCT). Compared to FFA and CFP, OCT and
OCTA offer a non-invasive approach to provide clear visualization of different
layers and blood flow, avoiding potential side effects and risks associated with
dye injection [4]. Therefore, the combined use of OCT and OCTA for AMD
diagnosis is not only safer but also more precise. Several automated methods have
been proposed to employ OCT and OCTA for AMD classification. For example,
multi-task networks [5,6,7] were utilized to obtain segmentation results of key
regions on individual OCT images, guiding the network to focus on sensitive
areas for AMD lesions. Multi-scale convolutional neural networks (CNN) [8,9]
were employed to extract rich feature representations for AMD classification.
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Recently, Zhang et al. [10] achieved high accuracy in AMD classification by
utilizing a 2D CNN that was trained with additional supervision on 3D OCTA
volumes.

Although progress has been made in AMD classification, there are still sev-
eral challenges that require investigation. Firstly, existing works focus on the
dry and wet AMD classification, with little in-depth research on the CNV-type
classification. In addition, many studies solely rely on a single-modal to differ-
entiate AMD types, failing to take full advantage of the OCT layer structure
and blood flow information in OCTA. This may cause unreliable clinical diag-
nosis. In practice, ophthalmologists consider both OCT and OCTA images and
combine their modality-specific information to make a more accurate diagnosis.
Therefore, to extract modality-specific pathological features and integrate them
into deep networks, we propose to combine OCT sequences and OCTA images
for AMD classification, and CNV differentiation.

Specifically, we propose a novel M modal Prior Mutual-support Network
(MPMNet) for the classification of normal, dry AMD, type 1 CNV, and type 2
CNV. The MPMNet makes full use of the prior pathological features of OCT
sequences and OCTA images, where a distillation loss is introduced to enhance
the consistency and complementarity of multi-modal classification. The main
contributions can be summarized as follows:

(a) To our knowledge, this work is the first attempt to classify normal, dry AMD,
type 1 CNV, and type 2 CNV using both OCT sequences and OCTA images.

(b) A new modal prior mutual-support mechanism is proposed to boost the net-
work to focus on the pathology information that is sensitive to each modality.

(c) A mutual information-guided feature dynamic adjustment strategy is de-
signed to reduce the impact of low-quality images and enhance the robust-
ness of the network.

2 Proposed Method

The proposed MPMNet comprises three primary components: a multi-branch
encoder, a modal prior mutual-support mechanism, and a mutual information-
guided feature adjustment strategy, as depicted in Fig. 2.

2.1 Multi-branch Encoder

The multi-branch encoder consists of two symmetrical CNN branches and a
Vision Transformer (ViT) [11] branch.

To better extract features of OCT sequences stacked in the channel direction,
we present a lesion region self-attention to replace self-attention in the ViT
branch. Then the global information of ViT and the local information of CNN
are integrated to obtain the comprehensive high-dimensional features of OCT
sequences, as shown in Fig. 2-(a).
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Fig. 2. The architecture of MPMNet and the specific design of its modules.

Specifically, the CNN branch contains four stages, each containing three resid-
ual blocks. The ViT branch contains 12 ViT blocks, and the current block re-
ceives the output of the previous block as input. While the pathological infor-
mation in the OCT sequence changes frame by frame, the spatial position of the
lesion is roughly the same. To exploit this characteristic, the features fed into
the ViT block are projected only once to establish pairwise correlations among
the visual markers, as expressed in Eq. 1. This enables each feature to pay at-
tention to features with similar positions while focusing on itself. The current
ViT features are processed by 1× 1 convolution and upsampling to ensure their
spatial scales and channel dimensions are consistent with the local features in the
corresponding CNN branches. The integrated CNN features and ViT features
with the same scale are used as input to the next residual block. The process
is illustrated by the feature integration module shown in Fig. 2-(a). Finally,
the high-dimensional features of the OCT sequence are obtained from the last
residual block of the CNN branch. This multi-branch encoder is designed based
on the characteristics of each modality, which can fully capture rich semantic
information on each modality.

ft = Softmax(
XWsW

T
s XT

√
d

)WvX, (1)

where ft stands for high-dimensional representation, X is a collection of visual
tokens with d dimensions, Ws,Wv ∈ Rd×d are projection parameters.



Multimodal learning for AMD classification 5

2.2 Modal Prior Mutual-support Mechanism

To enhance feature representation for specific modalities, we proposed a modal
prior mutual-support mechanism (MPMM), inspired by a segmentation work [12].
Clearly, OCTA images are highly sensitive to the presence of CNV, while OCT se-
quences allow for clear observation of drusen and changes in retinal layers. Based
on this fact, the MPMM consists of two branches, with each branch considering
OCT or OCTA as the primary modal, respectively. As shown in Fig. 2-(b), when
utilizing OCTA as the primary modal, two specific features extracted from the
multi-branch encoder are separately input into the classifiers to calculate pre-
diction probabilities Pa and Pb for the presence of CNV or not CNV. Where Pa

represents the prediction probability for the primary modal OCTA, and Pb for
OCT.

When Pa exceeds the predetermined probability threshold Ta, that class will
be regarded as the final decision. Otherwise, the probabilities predicted by the
two modalities will be used for voting as an auxiliary decision, and the final
probabilities will be normalized as the joint decision Kc

t , which can be expressed
in Eq. 2 and Eq. 3.

Ki
a =


P i
a, P i

a >= Ta

Average
(
P i
a, P

i
b

)
, P i

a < Ta

(2)

Kc
t =

Ki
a∑N

i Ki
a

(3)

where c stands for category, i represents a specific category (i.e. CNV and not
CNV), N denotes the total number of categories, and Kc

t denotes the normalized
soft label of category c.

Similarly, OCT is employed as the primary modal for discriminating among
Dry AMD, type 1 CNV, and type 2 CNV.

Finally, the KL dispersion is employed to compute the distillation loss of the
decision result Ka for the primary modal and the joint decision result Kt for the
primary modal and auxiliary modal, as shown in Eq. 4.

Lkd = KL

(
Softmax

(
Ka

τ

)
∥ Softmax

(
Kt

τ

))
(4)

where τ represents the temperature coefficient.
According to [13], the overall task loss is represented by Eq. 5.

Ltask = α ∗ Lcls + β ∗ τ2 ∗ Lkd (5)

where Lcls represents the multimodal classification loss computed using the
cross-entropy loss function, while α and β are hyperparameters used to balance
the gradients, with assigned values of 0.7 and 0.3, respectively.
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2.3 Feature Dynamic Adjustment Strategy

To further enhance the weighting of reliable modalities in the fusion process, we
propose a feature dynamic adjustment strategy (FDAS) by employing mutual
information to evaluate the significance of OCTA images. OCT provides more
categorized information than OCTA and some OCTA images are of low quality.
Therefore, we treat each channel of OCTA as a feature, computing the mutual
information between each OCTA feature and OCT features to adjust the weights
of OCTA features. The mathematical definition of mutual information is given
by Eq. 6.

I(X;Y ) =
∑
x∈X

∑
y∈Y

P (x, y)log
P (x, y)

P (x)P (y)
, (6)

where P (x, y) represents the joint probability of X and Y , while P (x) and
P (y) denote the marginal probabilities of X and Y , respectively. However, the
joint probability distribution of high-dimensional features is highly complex, ren-
dering direct computation of mutual information challenging. To address this,
We adopted the neural network-based mutual information estimation method
(MINE) proposed by [14]. The high-dimensional features of OCTA are treated as
individual features on a channel-by-channel basis. Subsequently, the mutual in-
formation between these features and the entire high-dimensional OCT features
is calculated using the MINE method. Utilizing normalized mutual information
as dynamic weights, we adjust the OCTA features and integrate them with OCT
features. This approach mitigates the impact of low-quality OCTA images on
fused features, thereby enhancing the robustness of the network.

3 Experimental Results

3.1 Experimental Setup

Dataset: The proposed MPMNet was evaluated on a private dataset consisting
of paired OCT and OCTA images from 384 eyes, obtained using the Heidelberg
OCT2 system (Heidelberg, Germany). The enface projection of the avascular
complex served as the OCTA images, which were captured within a 3× 3 mm2

area centered on the fovea. OCT sequences were based on central B-scan images,
randomly selecting 16 OCT B-scan slices from the macular region. All images
were resized to 224 × 224 resolution for training. The dataset consists of eyes
categorized as healthy, dry AMD, type 1 CNV, and type 2 CNV, with respective
counts of 79, 74, 83, and 112. For each eye, two ophthalmologists jointly classify
its condition as one of these four categories, by examining the corresponding
CFP along with OCT, FA, or OCTA images.
Implementation Details: Our method is implemented based on the PyTorch
framework with four Nvidia RTX 3090 GPUs. We train the model using an
Adam optimizer with an initial learning rate of 0.0001 and a batch size of 8
for 200 epochs, without implementing a learning rate decay strategy. The model
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Table 1. Performance comparison of different methods on private dataset and public
dataset MMC-AMD.

Method
Private datasets Public datasets

F1 ACC Kappa F1 ACC Kappa

OCTA-CNN 0.5368 0.6029 0.4507 - - -
OCT-CNN 0.7556 0.7058 0.5903 - - -

Resnet-50 [15] 0.8230 0.7794 0.6927 0.6700 0.8167 0.6133
ConvNext [16] 0.7952 0.7059 0.6014 0.6410 0.8000 0.6131

Vision Transformer [11] 0.5381 0.7107 0.41.68 0.7405 0.7500 0.6531
Swin Transformer [17] 0.7015 0.6764 0.5448 0.7429 0.71875 0.5527

CCDFuse [19] 0.5793 0.5143 0.3532 0.4534 0.6250 0.4181
MMC-AMD [18] 0.8488 0.7813 0.7083 0.8929 0.8516 0.8115

Ours 0.8930 0.8676 0.8215 0.8920 0.8750 0.8248

inputs were subjected to a standard data augmentation pipeline during training,
including random horizontal flipping, random rotation, and random cropping. A
5-fold cross-validation method was used to evaluate the performance.

3.2 Comparison with State-of-the-arts:

Single-modal experiments:We conducted extensive single-modal experiments
on OCTA and OCT images to determine the optimal input configuration. Two
single-modal models were trained: OCTA-CNN and OCT-CNN. As shown in Ta-
ble 1, the results indicate that the classification performance of the OCT images
is superior to that of OCTA images.

Multi-modal experiments: To benchmark the performance of our model, we
compared it with state-of-the-art AMD classification methods, including Resnet-
50 [15], ConvNext [16], Swin Transformer [17], MMC-AMD [18], CDDFuse [19].
The first three classification networks were adapted to dual branches to accom-
modate multi-modal image inputs. We evaluated the classification performance
using metrics such as F1 score (F1), Accuracy (ACC), and Cohen’s Kappa Coef-
ficient (Kappa). The results in Table. 1 show that our MPMNet outperforms ex-
isting state-of-the-art approaches. Conventional classification networks struggle
with redundant information and low-quality images in this dataset, while newer
baselines like MMC-AMD are also impacted by their design focus. Similarly,
advanced fusion networks like CDD-Fuse overlook pathological priors from both
modalities. In contrast, our method considers the contribution of each modal-
ity’s priors and utilizes their complementarity, yielding superior performance in
AMD classification with OCT and OCTA.

Extended experiment on public dataset: To further verify our method’s
stability and generability, we conducted experiments on a public dataset MMC-
AMD [18], which includes paired CFP images and OCT images. The implemen-
tation details remain consistent with the experiments on the in-house dataset.
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Table 2. Ablation results for AMD classification on private dataset.

Method Private dataset

Backbone Multi-brunch MPSM FDAS F1 ACC Kappa

✓ 0.8709 0.8125 0.7467

✓ ✓ 0.8844 0.8438 0.7872

✓ ✓ ✓ 0.8800 0.8529 0.8022

✓ ✓ ✓ ✓ 0.8930 0.8676 0.8215
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Fig. 3. Visualization of the same dataset’s Grad-CAM across different modules. The
orange circles indicate ROIs, while the red circles highlight interference from artifacts.

Since no specific dataset division was published, we randomly selected 300 pairs
of images, comprising 50 pairs of healthy samples, 75 pairs of dry AMD, 100
pairs of wet AMD, and 75 pairs of polypoidal choroidal vasculopathy. As demon-
strated in Table 1, our method achieved the best performance compared to other
methods, with an accuracy of 0.8750 and a Kappa coefficient of 0.8215.

3.3 Ablation Study

To demonstrate the effectiveness of MPMNet in AMD classification, we employed
a dual-branch CNN network as the backbone and systematically integrated indi-
vidual components into the training framework. The ablation validation results
for each component are summarized in Table. 2, and the respective visualizations
are shown column-by-column in Fig. 3. The first two columns reveal the gradual
increase in the network’s ability to capture regions of interests (ROIs) of com-
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plex shapes. The middle three columns demonstrate that the network initially
focuses on the highlighted artifact regions but then gradually shifts its attention
to the ROIs. The last two columns show that with the introduction of the mod-
ules, the network starts to recognize ROIs that were previously ignored. From
the above results, the network demonstrates the capability to accurately discern
each modality-sensitive region, facilitated by the mutual-support mechanism of
modal priors, thereby achieving higher accuracy and robustness.

4 Conclusion

In summary, this study presents a novel approach aimed at addressing the chal-
lenges of AMD classification. It incorporates a multi-branch encoder, modality
prior mutual-support mechanisms, and a modality feature adjustment strategy
based on mutual information to achieve an accurate classification of AMD. Ex-
perimental results indicate that by integrating modality prior mutual-support
to enhance feature extraction and conducting multi-modal feature adjustment,
the accuracy and robustness of AMD classification models can be significantly
improved. Compared to current state-of-the-art methods, the proposed approach
demonstrates superior performance.
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