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Abstract. In computational pathology, Multiple Instance Learning (MIL) is 
widely applied for classifying Giga-pixel whole slide images (WSIs) with only 
image-level labels. Due to the size and prominence of positive areas varying sig-
nificantly across different WSIs, it is difficult for existing methods to learn task-
specific features accurately. Additionally, subjective label noise usually affects 
deep learning frameworks, further hindering the mining of discriminative fea-
tures. To address this problem, we propose an effective theory that optimizes 
patch and WSI feature extraction jointly, enhancing feature discriminability. 
Powered by this theory, we develop an angle-guided MIL framework called 
PSJA-MIL, effectively leveraging features at both levels. We also focus on elim-
inating noise between instances and emphasizing feature enhancement within 
WSIs. We evaluate our approach on Camelyon17 and TCGA-Liver datasets, 
comparing it against state-of-the-art methods. The experimental results show sig-
nificant improvements in accuracy and generalizability, surpassing the latest 
methods by more than 2%. Code will be available at: 
https://github.com/sm8754/PSJAMIL. 
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1 Introduction 

Modern microscopes digitize traditional slides into WSIs, which often contain gigapix-
els and cannot be directly analyzed by neural networks. MIL is widely used to solve 
this problem [1-4]. The pioneering work [5] proposed dividing the WSI foreground 
region into patches and then classifying based on the feature embeddings of all patches. 
These early works [6,7] significantly improved the classification performance, proving 
the effectiveness of MIL. In weakly supervised learning scenarios, the negative in-
stances are unknown, leading to significant uncertainty. Therefore, it is important to 
carefully adjust each weightsand combine them, which helps extract genuinely 
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distinctive features. Proper calibration of the weighting is pivotal for nuanced compre-
hension and accurate decision-making [8,9]. 

In response to this problem, some recent work has made the following efforts. To 
learn from unlabeled image patches, DTFD-MIL [10] introduced the concept of 
pseudo-bags and constructed a double-tier MIL framework. Meanwhile, SSL + MIL 
[11] introduced semi-supervised learning (SSL) to MIL. In addition, exploring the po-
tential hard instances is also a mainstream approach. MHIM-MIL [12] used a Siamese 
structure with a consistency constraint. CIMIL [13] aggregated instance representations 
with normalized distances between instances and the critical instance. The above meth-
ods are all designed for patch-level feature learning. However, since the proportion of 
negative instances is not fixed and samples may be incorrectly labeled, the above 
method still suffers from noisy information interference [14,15]. In addition, previous 
classification networks used FC layers to convert features into class confidence scores. 
Based on this method, sample features extracted are poorly discriminative and chal-
lenging to optimize intuitively [16-18]. 

 
Fig. 1. (a) Implementation process of PSJA-MIL, mainly divided into patch images -> patch 
features -> WSI feature -> WSI class -> loss. (b) Patch contrastive estimation loss utilizes the 
attention scores of patches and selects patches for contrastive learning. (c)  PCS-classifier im-
proves the interpretability of each WSI-level feature. (d) Adaptive cross-entropy loss uses the 
discriminability to adjust the learning intensity for samples. 

We propose a theory called patch-slide discrimination joint learning. Specifically, 
we jointly optimize patch and WSI feature extraction across samples to enhance feature 
discrimination. For patch-level features, we assign contrastive loss and pseudo-labels 
based on the confidence of each patch. For WSI-level features, the optimization 
strength of cross-loss is adaptively adjusted by measuring the discriminability of 
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samples. Based on this theory, we propose an Prototypical Cosine Similarity Guided 
classification method (PCS-classifier), which enhances the correlation of sample fea-
ture vectors to confidence scores. The above design units are shown in Fig. 1(b-d), 
which will be discussed in the following sections. Finally, we utilize a transformer-
based approach to develop a MIL framework called PSJA-MIL, as shown in Fig. 1(a). 
This framework is designed to learn and integrate dual-level features. We evaluate our 
method on two challenging datasets, Camelyon17 and TCGA-Liver. PSJA-MIL 
achieved state-of-the-art results on the pathological image classification task, and each 
critical component is practical and versatile. 

2 Method 

2.1 Patch-Slide Discriminative Joint Learning 

To improve the discrimination of patch and slide-level features, we design patch con-
trastive estimation loss and adaptive cross-entropy loss, respectively. These losses are 
cleverly designed using attention scores, which are generated by the gated attention 
mechanism [19]. 

Patch Contrastive Estimation Loss. In the heatmap visualization of previous work 
[20] and this work, it can be found that the category with the highest attention is usually 
the target category, while the category with the lowest attention is usually the normal 
tissue. Based on the above experience, we annotate some of the unlabeled patches based 
on attention scores. Considering the varying tumor areas in different WSIs, we set a 
relatively flexible selection method. Specifically, in each WSI, the first 15 patches with 
an attention score in the ( ) ( ) max 0.3, maxscores scores−  interval are labeled in the same 
category as the WSI. Meanwhile, patches labeled normal tissue should have attention 
scores in the range ( ) ( ) min , min 1 9scores scores e+ − . To avoid focusing on the single 
characteristic of marginal tissue, we select one patch for every two patches, with a max-
imum of 5. According to the above selection method, the features of the selected 
patches in the current batch constitute the set K. Based on the same method, the features 
of different categories of patches (across batches) are put into different sets, and each 
set B  contains a maximum of patches extracted from 20 WSIs. Q  is the total set of 
the above sets. 

We introduce the concept of contrastive learning [21], identifying commonalities 
among patches of the same class by contrasting samples under different labels. Thus, 
the patch contrastive estimation loss is defined as follows: 
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where, tB  is the set of features under the same category with k
Sf ; ( )Tk b
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are used to measure the similarity of two vectors; ( )0,1   is a hyperparameter to 



4  J. Yu et al. 

prevent overfitting to patches potentially assigned incorrect labels. As shown in Fig 
1(b), features within the same class become more similar, while those between different 
classes become more distinct. 

Adaptive Cross-entropy Loss. To avoid the influence of noisy labels and tissues, we 
adaptively determine the learning intensity for each sample based on its discriminabil-
ity, as shown in Fig. 1(d). We use the attention score sequence A  to measure the con-
fidence of each patch being of the same class as the WSI. If there are more patches of 
the same category as the WSI, it indicates a higher discriminability of the WSI. Ac-
cordingly, we measure the discriminability based on the ratio of the average attention 
score to the highest attention score, denoted as ( ) ( )maxD mean A A= . The discerni-
bility D  is directly proportional to the learning intensity. However, this configuration 
may lead the model to focus excessively on highly discriminative sample during train-
ing. As a result, the model may overfit these specific samples, while neglecting the 
generalization of other samples. L2 regularization is used to mitigate this issue, with 
D  employed to adjust the strength of the regularization. Conversely, D  is inversely 
correlated with the regularization strength.  

Based on the analysis above, we propose the adaptive cross-entropy loss: 
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where N  is the batch size, C  is the number of categories, t  represents the ground-
truth label, ,n tY  is the predicted score for the right category, and lM  is the layer param-
eter. ( )ng D  is an increasing function whose specific form is provided later; 2 0Lr   is 
the regularization coefficient, ( )21 nD− decreases monotonically within the value inter-
val. 

2.2 Prototypical Cosine similarity Guided MIL Framework  

Traditional classification models usually use an FC layer to aggregate all features and 
generate confidence scores for each category. To encourage the model to learn the dis-
criminative features, we designed a new classification mechanism, namely the PCS-
classifier. As shown in Fig. 1(c), the sample category is determined by the angle be-
tween the generated feature and the class center, which facilitates intuitive optimization 
of feature learning. Specifically, we establish class center vectors with the maximum 
margin to enhance the discriminability of WSI-level features. The FC layer is retained 
for feature aggregation and compression. Its output and the center vectors are normal-
ized to a fixed magnitude ( ˆ 0F t=  , ˆ 1cW = ). Under this mechanism, the confi-
dence level for each category is calculated as follows: 

 ˆ ˆ,
ˆ ˆ cos

ccc W FW FY =  (3) 

where, ˆ ˆ,cW F is the angle between the feature and the class center.  
The adaptive cross-entropy loss optimizes the model based on WSI-level classifica-

tion results. Under the  PCS-classifier, increasing the angle between the feature vector 



 Patch-Slide Discriminative Joint Learning 5 

and the actual class center can enhance the optimization intensity. Thus, the adjusted 
true class confidence in Eq. (2) can be defined as: 

 ( ) ( ),, ˆ ˆ, , ,
ˆ ˆˆ cos

n t nn t nn t n t n a nW FW FY Y g D r D= + = +  (4) 

where, 0ar   is the interval of the angle margin, nD  adjusts the size of the margin. 
Before the classification head, the specific implementation details of PSJA-MIL are 

as follows: Firstly, generic features of patches are extracted offline. These features con-
taining information such as texture and edges are not uniquely specific to the classifi-
cation task. Hence, an encoder layer is used for feature mapping to generate task-spe-
cific patch-level features. Each patch is processed in parallel and optimized by patch 
contrastive estimation loss. Since the patch is annotated with pseudo-labels, to mitigate 
the impact of potential erroneous labels on training, the contribution coefficient should 
be relatively small. Experimental verification has determined that a coefficient of 0.4 
is appropriate. 

Then, we employ the gated attention mechanism [19] to measure the attention score 
of each patch as confidence belonging to the same class as the WSI. Based on the at-
tention scores, the features of each patch are weighted, thereby adaptively avoiding the 
interference of negative patches. Then, a Transformer containing one layer of encoder 
and decoder is used to learn the correlations between different patches. Finally, the 
output vectors are averaged, and the result is WSI-level feature. Learning and optimizing 
WSI-level features and task-specific patch-level features together constitute patch-slide 
discrimination joint learning. 

3 Experiments and Results 

3.1 Datasets and Experimental Settings  

Datasets. We evaluate the proposed method on two public datasets. 1) Camelyon17 
[22]. This dataset identifies lymph node metastases containing normal and tumor cate-
gories. Among them, tumor samples can be divided into three types. Isolated tumor 
cells (ITC) is the minorest type of metastasis, smaller than 0.2 mm or less than 200 
cells, which is very challenging. Since only the annotations for the training set are pub-
licly accessible, we used the training set for experiments. These data encompass 500 
WSIs from 100 patients in 5 medical centers. 2) TCGA-Liver. This dataset is collected 
from The Cancer Genome Atlas (TCGA) Data Portal, containing two categories: Liver 
Cancer (LIHC) and Bile Duct Cancer (CHOL). There is a severe imbalance in the da-
taset, including 379 LIHC WSIs and 36 CHOL WSIs. This poses a significant challenge 
to the feature learning. Each dataset is randomly split into a training-validation set and 
a test set in a 7:3 ratio. The training validation set is performed five-fold cross-valida-
tion, and the test set is used to report and compare model performance. 

Implementation Details. We refer to the CLAM model [23] for preprocessing WSIs, 
where all tumor regions in the WSIs are segmented into 256×256 patches. For 
Camelyon17, the magnification is 40x, and for TCGA-LIBD, it is 20x. Then, 1024-dim 
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features are extracted from the patches using a Res-Net50 pre-trained on ImageNet. 
Furthermore, we also extracted features using KimiaNet [24] (a DenseNet121 model 
pre-trained on TCGA slides). These features were only used in ablation experiments. 
During training, the Lookahead-RAdam optimizer was used with an initial learning rate 
of 0.0001 and a batch size 1. Accuracy (ACC) and area under the ROC curve (AUC) 
were used as evaluation metrics, and we reported the mean and variance of these met-
rics under five-fold cross-validation. All experiments were completed on a computer 
with an RTX 4090 GPU, using PyTorch 1.13.0 and Cuda 11.7 in Python 3.9.  

Parameter Setting. Experiments were performed on the TCGA-Liver dataset to deter-
mine the best configurations for each proposed module. The optimal parameter settings 
were selected based on the AUC and Acc metrics: 1) In the patch contrastive estimation 
loss, 0.5 = ; 2) In the PCS-classifier, t=5 ; 3) In the adaptive cross-entropy loss, 

0.25ar =  and 2 0.001Lr = . 

3.2 Comparison with SOTA Methods 

We compared the proposed PSJA-MIL method with state-of-the-art approaches, in-
cluding MIL methods and contrastive learning methods (SCL-WC [29]). The results 
are shown in Table 1. Among the SOTA models, SCL-WC performed exceptionally 
well on the TCGA-Liver dataset. However, PSJA-MIL improved the AUC by 2.04% 
and accuracy by 2.5% relative to this model. On the Camelyon17 dataset, our model 
offered even more significant improvements compared to SOTA models. Specifically, 
the AUC increased by 2.39%, and accuracy increased by 2.72%. Furthermore, the 
standard deviation of both metrics indicates that our model had a stable performance in 
the five-fold cross-validation. Our AUC metric was most stable across two datasets. 
This demonstrates the outstanding generalization ability of the proposed discriminative 
enhancement method. 

Table 1. Comparison of classification results on two datasets. 

Methods Camelyon17 TCGA-Liver 
AUC Acc AUC Acc 

CLAM [23] 88.01±0.027 82.99±0.021 91.96±0.601 89.15±1.814 
TransMIL [20] 92.39±0.028 87.70±0.037 94.19±0.931 93.51±2.648 
H2-MIL [25]  90.79±0.029 84.89±0.030 91.85±0.561 86.56±1.438 
MHIM-MIL [12]  89.68±0.022 85.13±0.010 93.78±1.642 90.27±3.182 
DAS-MIL [26]  95.78±0.013 92.24±0.028 93.51±0.573 92.92±2.497 
HAG-MIL [27]  93.04±0.014 87.23±0.026 95.04±0.724 92.58±2.721 
TPMIL [28]  89.22±0.021 85.28±0.023 93.15±0.487 90.66±1.945 
SCL-WC [29]  92.20±0.021 87.32±0.025 95.45±1.437 93.92±2.671 
Ours 98.17±0.011 94.96±0.019 97.49±0.450 96.42±1.471 
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3.3 Ablation Study 

Method design. To validate the effectiveness and versatility of the proposed method, 
we improved upon the classic Transformer-based model TransMIL [20] and evaluated 
different models using two datasets. Specifically, we applied patch contrastive estima-
tion loss to TransMIL's correlation modeling of the sequence, creating Patch-Trans-
MIL. On this basis, changing the prediction head to an  PCS-classifier and replacing 
the cross-entropy loss with adaptive cross-entropy loss resulted in Both-TransMIL. The 
results are shown in Table 2. 

With ResNet as the feature extractor, the improved models showed enhancement 
over TransMIL. The discriminative enhancement based on patch-level features led to 
an improvement of over 1% in all metrics for Patch-TransMIL. The discriminative en-
hancement based on WSI-level features further provided Both-TransMIL with an over-
all improvement of about 2% compared to the former. PSJA-MIL outperformed Both-
TransMIL on two datasets, particularly on Camelyon17, where our model increased 
accuracy by 3.85%. This demonstrates the rationality of each component and the over-
all framework.  

To further validate the effectiveness of discriminative enhancement based on patch-
level features, we compared the results using KimiaNet and ResNet as feature extrac-
tors. Unlike ResNet, KimiaNet is pre-trained using pathological images. Patch-Trans-
MIL based on ResNet showed similar results to TransMIL based on KimiaNet, indicat-
ing that the patch contrastive estimation loss enabled TransMIL to learn better patho-
logical features. Patch-TransMIL based on KimiaNet also showed an improvement of 
over 1% compared to TransMIL. This shows that the loss allows the model to further 
learn task-specific features based on general pathological features. 

Table 2. Ablation studies of PSJA-MIL on two datasets. 

Extractor Model Camelyon17 TCGA-Liver 
AUC Acc AUC Acc 

KimiaNet 
TransMIL 93.98±0.012 88.96±0.022 96.11±0.489 95.25±2.074 

Patch-TransMIL 95.16±0.011 90.37±0.019 97.13±0.338 96.49±1.966 

ResNet 

TransMIL 92.39±0.028 87.70±0.037 94.19±0.931 93.51±2.648 
Patch-TransMIL 94.07±0.019 89.54±0.029 95.35±0.626 94.73±2.145 

Both-TransMIL 96.34±0.013 91.11±0.016 97.02±0.479 96.38±1.924 

Ours 98.17±0.011 94.96±0.019 97.49±0.450 96.42±1.471 

3.4 Results of Joint Learning  

To validate that the proposed method can effectively generate discriminative features 
at both the patch and WSI levels, we conducted experiments on the Camelyon17 da-
taset. As shown in Fig. 2(a), we utilized PCA for feature space visualization. For WSI-
level features, we further subdivided tumor samples into macro, micro, and ITC cate-
gories. All tumor and normal samples tend to gravitate towards the proposed center and 
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separate from each other, with only a few ITC samples mixing in the normal cluster. 
Due to the adaptive cross-entropy loss, the distance of tumor samples from the proposed 
center correlates positively with the size of the tumor tissue. Consequently, the learning 
avoids the interference of negative tissue features, thereby acquiring discriminative 
WSI-level features. We assigned values to patches for patch-level features according to 
the pseudo-labeling approach mentioned in the text. Then, we randomly sampled 1% 
of the remaining patches from each slide and labeled them agnostic. Patches labeled 
normal or tumor are divided into different clusters in the feature space and located at 
the edges of the agnostic feature cluster, respectively. This indicates that the model is 
capable of learning discriminative patch-level features. 

In addition, we compared the actual annotation of the ITC sample with its heatmap. 
Fig. 2(b) shows an ITC sample magnified ten times, annotated tumor tissue in the left 
image, and visualized heatmap in the right image. We observe that PSJA-MIL can ac-
curately identify lesion tissue smaller than 200 micrometers. This confirms the effec-
tiveness of the proposed patch-slide discriminative joint learning approach. 

 
Fig. 2. Results of joint learning on the Camelyon17 dataset. (a) Visualizing the WSI and patch-
level feature space. (b) Comparison of lesion annotation with heatmap in an ITC sample. 

4 Conclusion 

We propose patch-slide discriminative joint learning, which can effectively learn dis-
criminative features at patch and WSI levels. To avoid the impact of negative instances 
and noise samples, we design two losses for feature optimization at these two levels 
and design  PCS-classifier to further enhance the discriminability of features. To 
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maximize the effectiveness of these critical components, we developed a Transformer 
framework called PSJA-MIL. A large number of experiments demonstrate the effec-
tiveness and portability of the proposed method. 
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