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Abstract. Semi-supervised learning, a paradigm involving training models with 
limited labeled data alongside abundant unlabeled images, has significantly ad-
vanced medical image segmentation. However, the absence of label supervision 
introduces noise during training, posing a challenge in achieving a well-clustered 
feature space essential for acquiring discriminative representations in segmenta-
tion tasks. In this context, the emergence of vision-language (VL) models in nat-
ural image processing has showcased promising capabilities in aiding object lo-
calization through the utilization of text prompts, demonstrating potential as an 
effective solution for addressing annotation scarcity. Building upon this insight, 
we present Textmatch, a novel framework that leverages text prompts to enhance 
segmentation performance in semi-supervised medical image segmentation. Spe-
cifically, our approach introduces a Bilateral Prompt Decoder (BPD) to address 
modal discrepancies between visual and linguistic features, facilitating the ex-
traction of complementary information from multi-modal data. Then, we propose 
the Multi-views Consistency Regularization (MCR) strategy to ensure con-
sistency among multiple views derived from perturbations in both image and text 
domains, reducing the impact of noise and generating more reliable pseudo-la-
bels. Furthermore, we leverage these pseudo-labels and conduct Pseudo-Label 
Guided Contrastive Learning (PGCL) in the feature space to encourage intra-
class aggregation and inter-class separation between features and prototypes, thus 
enhancing the generation of more discriminative representations for segmenta-
tion. Extensive experiments on two publicly available datasets demonstrate that 
our framework outperforms previous methods employing image-only and multi-
modal approaches, establishing a new state-of-the-art performance. 

Keywords: Medical image segmentation, Semi-supervised learning, Bilateral 
Prompt, Multi-views Consistency, Contrastive learning. 

1 Introduction 

Accurate results of medical image segmentation provide salient and insightful infor-
mation for clinicians, facilitating clinical diagnosis, disease progression, and treatment 
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planning. With the recent advancements in deep learning, numerous approaches have 
leveraged various types of deep neural networks trained on large annotated datasets, 
leading to outstanding performance across various medical image segmentation tasks 
[1-3]. Nevertheless, obtaining extensive pixel-level annotations is often time-consum-
ing and labor-intensive, necessitating expertise and incurring significant costs. Hence, 
it is imperative to devise methods to alleviate the aforementioned constraints. 

To tackle these issues, semi-supervised medical image segmentation has emerged as 
a promising technique, leveraging unlabeled data to enhance performance with only a 
limited number of labeled samples. According to [4], current semi-supervised ap-
proaches applied to medical image segmentation can be categorized into pseudo-label-
ing, consistency regularization, and hybrid methods. Pseudo-labeling methods [5-8] in-
volve generating pseudo-labels for a large portion of unlabeled data to expand training 
data, which are further utilized to train the segmentation network in a self-training man-
ner. Consistency regularization methods [9,10] encourage the similarity among predic-
tions from the perturbed inputs to enhance the generalization capability of the model. 
Hybrid methods [11,12] combine the aforementioned ideas to achieve better perfor-
mance.  

Despite advancements in previous studies, semi-supervised medical image segmen-
tation still faces challenges. As introduced, during the process of generating pseudo-
labels, the lack of supervised data contributes to the accumulation of significant noise 
in these labels, which adversely affects the efficacy of model training. Moreover, cur-
rent semi-supervised learning methods [9,10] provide supervision solely within the 
logit(pixel) space, yet they lack explicit guidance within the feature space. This absence 
of guidance impedes the acquisition of a well-clustered feature space, compromising 
the attainment of discriminative representations beneficial for segmentation tasks.  

Recently, vision language (VL) models [13-15] have garnered considerable attention 
in natural image processing and have found applications in medical image analysis [16-
19], showing promising results in fully supervised scenarios. As for medical image seg-
mentation, numerous studies [18-20] have shown that the introduction of text prompts 
can improve the models’ object localization ability and reduce the impact of noise, thus 
enhancing the segmentation performance. Nonetheless, in semi-supervised scenarios, 
the utilization of VL learning remains largely unexplored, as current methods [5-10] 
predominantly rely solely on image-level data, overlooking the potential of valuable 
complementary information provided by text prompts, which can act as an effective 
solution for addressing the scarcity of pixel-level annotations. 

In this paper, we propose Textmatch, a novel semi-supervised medical image seg-
mentation framework that explores the potential of text prompts for better segmentation 
performance. Specifically, we first introduce a Bilateral Prompt Decoder (BPD) to har-
monize the discrepancy between visual and linguistic features and mine additional in-
formation, taking advantage of mutual complementarity among multiple modalities. 
Furthermore, we propose a Multi-view Consistency Regularization (MCR) strategy. 
This strategy incorporates both image and text perturbations to derive various aug-
mented views with distinct image appearances and different text prompts of similar 
semantics. By incorporating a consistency regularization constraint to these views, we 
significantly reduce the impact of noise and generate more robust pseudo-labels. 
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Moreover, to address the challenge of insufficient guidance in feature space, we intro-
duce a novel Pseudo-label Guided Contrastive Learning (PGCL) strategy. This strategy 
encourages pixels belonging to the same class to converge towards their respective class 
prototypes in feature space while pushing those from different classes apart, thereby 
further facilitating the exploration of class-discriminative features. In summary, the 
contributions of this work consist of the following aspects: 

• We design a Bilateral Prompt Decoder to harmonize the modal discrepancy be-
tween visual and linguistic features and comprehensively extract mutually com-
plementary multi-modal feature representations. 

• We introduce a Multi-views Consistency Regularization strategy that incorpo-
rates both image and text perturbations to reduce the influence of noise and gen-
erate high-quality pseudo labels. 

• We propose a Pseudo-label Guided Contrastive Learning strategy to supervise 
feature space and explore class-discriminative features. 

• Extensive experiments on two public datasets demonstrate the significant ad-
vancement and superiority of the proposed framework. 

2 Method 

The overview of our proposed Textmatch is illustrated in Fig. 1. It takes the Mean 
Teacher structure [21] as the backbone, where both the student and teacher models 
comprise a visual encoder, a text encoder, several proposed bilateral prompt decoders, 
and a segmentation head. The visual and text encoders extract features independently. 
Subsequently, the bilateral prompt decoders perform multi-modal feature fusion, with 
the segmentation head producing the final segmentation mask. The teacher model is 
updated from the student model using the Exponential Moving Average (EMA). For 
labeled data, we employ ground truth for supervised learning. For unlabeled data, we 

 
Fig. 1. The overview of our model for Semi-supervised Medical Image Segmentation. 
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first ensure consistency regularization by generating augmented multiple views. Then, 
we derive high-quality pseudo-labels from the multi-views predictions to supervise the 
student model. Finally, we utilize pseudo-labels to guide the contrastive learning of the 
feature space. The details of our model and the objective functions will be introduced 
in the following sub-sections. 

Problem Setting and Feature Extraction. In our framework, the training dataset con-
sists of a small labeled subset containing 𝑁𝑁 labeled data and a large unlabeled subset 
containing 𝑀𝑀 unlabeled data, where 𝑀𝑀 ≫ 𝑁𝑁. In addition, both labeled and unlabeled 
data have their corresponding text prompts. We denote the labeled subset as 𝐷𝐷𝑙𝑙 =
��𝑥𝑥𝑖𝑖𝑙𝑙 , 𝑡𝑡𝑖𝑖𝑙𝑙 ,𝑦𝑦𝑖𝑖𝑙𝑙��𝑖𝑖=1

𝑁𝑁
 and the unlabeled subset as 𝐷𝐷𝑢𝑢 = {(𝑥𝑥𝑖𝑖𝑢𝑢, 𝑡𝑡𝑖𝑖𝑢𝑢)}𝑖𝑖=1𝑀𝑀 , where 𝑥𝑥𝑖𝑖 ∈ ℝ𝐶𝐶×𝐻𝐻×𝑊𝑊 

denotes the training image, 𝑦𝑦𝑖𝑖 ∈ ℝ𝐻𝐻×𝑊𝑊 denotes the label, and 𝑡𝑡𝑖𝑖 ∈ ℝ𝐿𝐿 denotes the cor-
responding text prompt containing 𝐿𝐿 words. For an input image 𝑥𝑥𝑖𝑖 ∈ ℝ𝐻𝐻×𝑊𝑊×𝐷𝐷, we ex-

tract multiple visual features 𝑓𝑓𝐼𝐼 = �𝑓𝑓𝑖𝑖𝐼𝐼 ∈ ℝ
𝐻𝐻
𝑑𝑑𝑖𝑖

×𝑊𝑊𝑑𝑑𝑖𝑖
×𝐶𝐶𝑖𝑖�

𝑖𝑖=1
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 from the different stages of the 

visual encoder, where 𝑑𝑑𝑖𝑖 denotes the downsampling rate and 𝐶𝐶𝑖𝑖 denotes feature dimen-
sion. For an input text prompt 𝑡𝑡𝑖𝑖 ∈ ℝ𝐿𝐿, we adopt the text encoder to extract the linguis-
tic features 𝑓𝑓𝑇𝑇 ∈ ℝ𝐿𝐿×𝐶𝐶, where 𝐿𝐿 is the number of words in the text prompt and 𝐶𝐶 de-
notes the feature dimension. 

Bilateral Prompt Decoder (BPD). In contrast to previous multi-modal fusion methods 
that utilize features from one modality to refine the other [14,20,22], our bilateral 
prompt method concurrently enhances the features of both modalities by mutual 
prompting, as shown in Fig. 1(b). Given input visual feature 𝑓𝑓𝐼𝐼 ∈ ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶𝐼𝐼 and linguis-
tic feature 𝑓𝑓𝑇𝑇 ∈ ℝ𝐿𝐿×𝐶𝐶𝑇𝑇 , the visual feature is reshaped into token sequences 𝑓𝑓𝐼𝐼 ∈
ℝ(𝐻𝐻×𝑊𝑊)×𝐶𝐶𝐼𝐼, and the dimensionality of image tokens and text tokens are aligned as: 

𝑓𝑓𝐼𝐼𝑑𝑑 ∈ ℝ(𝐻𝐻×𝑊𝑊)×𝐶𝐶𝑑𝑑 = 𝜎𝜎�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑓𝑓𝐼𝐼)�, 𝑓𝑓𝑇𝑇𝑑𝑑 ∈ ℝ𝐿𝐿×𝐶𝐶𝑑𝑑 = 𝜎𝜎�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑓𝑓𝑇𝑇)�, (1) 
where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(∙) denotes a 1 × 1 convolution layer, 𝜎𝜎 denotes the activation function 
and 𝐶𝐶𝑑𝑑 denotes the aligned feature dimension. Then, the bilateral prompt can be formu-
lated as: 

           𝑓𝑓𝐼𝐼′ ∈ ℝ(𝐻𝐻×𝑊𝑊)×𝐶𝐶𝑑𝑑 = 𝑓𝑓𝐼𝐼𝑑𝑑 + 𝛼𝛼 �𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓𝐼𝐼𝑑𝑑 ,𝑓𝑓𝑇𝑇𝑑𝑑 ,𝑓𝑓𝑇𝑇𝑑𝑑)�,                  (2) 

           𝑓𝑓𝑇𝑇′ ∈ ℝ𝐿𝐿×𝐶𝐶𝑑𝑑 = 𝑓𝑓𝑇𝑇𝑑𝑑 + 𝛼𝛼 �𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓𝑇𝑇𝑑𝑑 ,𝑓𝑓𝐼𝐼𝑑𝑑 ,𝑓𝑓𝐼𝐼𝑑𝑑)�,                  (3) 

where 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(·) denotes the Multi-Head Self-Attention layer and 𝛼𝛼 is a learnable pa-
rameter that controls the weight of the residual connection. The refined visual feature 
is reshaped and upsampled to obtain 𝑓𝑓𝐼𝐼′′ ∈ ℝ𝐻𝐻′×𝑊𝑊′×𝐶𝐶𝑑𝑑. Subsequently, 𝑓𝑓𝐼𝐼′′ is concate-
nated with 𝑓𝑓𝐶𝐶 ∈ ℝ𝐻𝐻′×𝑊𝑊′×𝐶𝐶𝑑𝑑 (the low-level visual feature from skip connection) on the 
channel dimension. Finally, the concatenated features are processed through a convo-
lution layer and an activation function to obtain the final fused feature 𝑓𝑓𝑂𝑂 and 𝑓𝑓𝑇𝑇

′ . The 
process can be expressed as: 

           𝑓𝑓𝐼𝐼′′ = 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈�𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑓𝑓𝐼𝐼′)�,                  (4) 

           𝑓𝑓𝑂𝑂 = 𝜎𝜎�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶([𝑓𝑓𝐼𝐼′′;  𝑓𝑓𝐶𝐶])�,                  (5) 
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where [∙ ; ∙] represents the concatenate operation on the channel dimension. 

Multi-views Consistency Regularization (MCR). As shown in Fig. 1(c), the MCR 
strategy integrates both image and text perturbations, generating varied augmented im-
age-text pairs for unlabeled data, denoted as distinct views. Specifically, for an unla-
beled sample 𝐷𝐷𝑖𝑖𝑢𝑢 = (𝑥𝑥𝑖𝑖𝑢𝑢, 𝑡𝑡𝑖𝑖𝑢𝑢), the image is augmented following [12], denoted as 𝒜𝒜(∙). 
The corresponding augmented texts are generated through the generative model [23] 
with different expressions, denoted as 𝒯𝒯(∙). The multiple views are formulated as: 

           𝑉𝑉𝑖𝑖 = �(𝒜𝒜(𝑥𝑥𝑖𝑖𝑢𝑢),𝒯𝒯(𝑡𝑡𝑖𝑖𝑢𝑢))𝑗𝑗�𝑗𝑗=0
𝑛𝑛

,                  (6) 

where 𝑛𝑛 denotes the number of augmented views and 𝑉𝑉𝑖𝑖0 denotes the original input. 
Subsequently, 𝑉𝑉𝑖𝑖0 is forwarded to the student model, while �𝑉𝑉𝑖𝑖𝑖𝑖�𝑗𝑗=1

𝑛𝑛  is transmitted to the 
teacher model to obtain the prediction. Then, the ultimate regularization loss is formu-
lated as: 

           𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = 1
𝐵𝐵×𝑛𝑛

∑ ∑ 𝑀𝑀𝑀𝑀𝑀𝑀 �𝑆𝑆(𝑉𝑉𝑖𝑖0),𝑇𝑇�𝑉𝑉𝑖𝑖𝑖𝑖��𝑛𝑛
𝑗𝑗=1

𝐵𝐵
𝑖𝑖=1 ,                  (7) 

where 𝐵𝐵 denotes the batch size, 𝑀𝑀𝑀𝑀𝑀𝑀(∙) denotes the mean squared error, 𝑆𝑆 denotes the 
student model, and 𝑇𝑇 denotes the teacher model. Leveraging the complementary char-
acteristics of multiple views, we employ the average prediction results from the teacher 
model as pseudo-labels to mitigate label noise before guiding the student model. Fi-
nally, we use 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(.) to denote the Dice loss [3], and the pseudo-label supervision loss 
can be formulated as: 

           𝐿𝐿𝑝𝑝𝑝𝑝 = 1
𝐵𝐵
∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 �𝑆𝑆(𝑉𝑉𝑖𝑖0), 1

𝑛𝑛
∑ 𝑇𝑇�𝑉𝑉𝑖𝑖𝑖𝑖�𝑛𝑛
𝑗𝑗=1 �𝐵𝐵

𝑖𝑖=1 .                 (8) 

Pseudo-label Guided Contrastive Learning (PGCL). To explore class-discrimina-
tive features, we propose the contrastive learning strategy, as shown in Fig. 1(d). For 
labeled data, where 𝑦𝑦 ∈ ℝ𝐻𝐻×𝑊𝑊  denotes the ground truth indicating foreground and 
background and 𝑓𝑓𝑙𝑙 ∈ ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶  represents the projected and upsampled visual feature 
from the student model, we compute the prototypes of foreground (𝑃𝑃𝑓𝑓) and background 
(𝑃𝑃𝑏𝑏) as follows: 

          𝑃𝑃𝑓𝑓 =
𝛴𝛴𝑖𝑖,𝑗𝑗𝑦𝑦𝑖𝑖𝑖𝑖⋅𝑓𝑓𝚤̇𝚤𝑗𝑗

𝑙𝑙

𝛴𝛴𝑖𝑖,𝑗𝑗𝑦𝑦𝑖𝑖𝑖𝑖
,              𝑃𝑃𝑏𝑏 =

𝛴𝛴𝑖𝑖,𝑗𝑗(1−𝑦𝑦𝑖𝑖𝑖𝑖)⋅𝑓𝑓𝚤̇𝚤𝑗𝑗
𝑙𝑙

𝛴𝛴𝑖𝑖,𝑗𝑗(1−𝑦𝑦𝑖𝑖𝑖𝑖)
, (9) 

The formulas calculate the mean feature vectors of pixels for the foreground and 
background regions based on the ground truth label, serving as the prototypes that can 
be updated through EMA when training. For unlabeled data, with the pseudo-label 𝑦𝑦� ∈
ℝ𝐻𝐻×𝑊𝑊 derived from predictions of multiple views and the visual feature 𝑓𝑓𝑢𝑢 ∈ ℝ𝐻𝐻×𝑊𝑊×𝐶𝐶 
of unlabeled data, our objective is to minimize the distance between the pixel-level 
feature and its corresponding prototype while simultaneously maximizing the distance 
between the pixel feature and the non-corresponding prototype guided by the pseudo-
label. The contrastive learning loss based on InfoNCE [24] is formulated as: 

ℋ�𝑓𝑓𝑖𝑖𝑖𝑖𝑢𝑢,𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦� =
exp�sim�𝑓𝑓𝑖𝑖𝑖𝑖

𝑢𝑢,𝑃𝑃𝑥𝑥�∕𝜏𝜏�

exp�sim�𝑓𝑓𝑖𝑖𝑖𝑖
𝑢𝑢,𝑃𝑃𝑥𝑥�∕𝜏𝜏�+exp�sim�𝑓𝑓𝑖𝑖𝑖𝑖

𝑢𝑢,𝑃𝑃𝑦𝑦�∕𝜏𝜏�
,                          (10) 

𝐿𝐿𝑐𝑐 = − 1
𝐻𝐻×𝑊𝑊

∑ ∑ �𝑦𝑦𝚤𝚤𝚤𝚤� ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 �ℋ�𝑓𝑓𝑖𝑖𝑖𝑖𝑢𝑢,𝑃𝑃𝑓𝑓,𝑃𝑃𝑏𝑏�� + �1 − 𝑦𝑦𝚤𝚤𝚤𝚤�� ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 �ℋ�𝑓𝑓𝑖𝑖𝑖𝑖𝑢𝑢,𝑃𝑃𝑏𝑏 ,𝑃𝑃𝑓𝑓���𝑊𝑊
𝑗𝑗=1

𝐻𝐻
𝑖𝑖=1 ,   (11) 

where sim(. , . ) denotes cosine similarity and 𝜏𝜏 denotes temperature coefficient. 
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Overall Learning Objective. For labeled data, we integrate the cross-entropy loss and 
Dice loss to supervise the model training (i.e., 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠). For the unlabeled data, we calcu-
late the multi-views consistency loss 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 in Eq. 7, pseudo-label supervision loss 𝐿𝐿𝑝𝑝𝑝𝑝 
in Eq. 8 and contrastive learning loss 𝐿𝐿𝑐𝑐 in Eq. 11. Finally, the total loss function can 
be formulated as below: 

𝐿𝐿 = 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜆𝜆1𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜆𝜆2𝐿𝐿𝑝𝑝𝑝𝑝 + 𝜆𝜆3𝐿𝐿𝑐𝑐, (12) 
where 𝜆𝜆1, 𝜆𝜆2 and 𝜆𝜆3 are hyperparameters to trade off the importance of corresponding 
terms. 

3 Experiments and Results 

Datasets and Metrics. We evaluate the performance of our proposed framework on 
two publicly available datasets: 1) QaTa-COV19 [25] consists of 9258 COVID-19 
chest X-ray radiographs with manual annotations of COVID-19 lesions. 2) MosMed-
Data+ [26] consists of 2729 CT scan slices of lung infections. Li et al. [19] extended 
the text prompts for these datasets. The text prompts focus on whether both lungs are 
infected, the number of lesion regions, and the approximate location of the infected 
areas. Following previous works [8,19], we use 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 coefficient metrics to 
evaluate the segmentation results objectively. Both of them calculate the intersection 
regions over the union regions of the given predicted mask and ground truth. 

Implementation Details. Our model is implemented using the PyTorch framework and 
executed using four NVIDIA GeForce RTX 2080Ti GPUs, each with a memory of 
10GB. To be specific, ConvNeXt-Tiny [27] is selected as the image encoder and BERT 
[28] is adopted as the text encoder. The projection head is basically a shallow FC layer 
[29]. For image augmentations, we use random scaling, morphological, and brightness 
changes following [12]. For text augmentations, we utilize the generative pre-trained 
transformer model [23] to generate similar text prompts. For a fair comparison, we fol-
low the previous works [8,19] and use 5%, 15%, and 25% labeled data for training the 
model. The model is converged using an Adam optimizer with a batch size of 48 and a 
learning rate of 3𝑒𝑒 − 4. For hyperparameter settings, we set the number of views 𝑛𝑛 =
3 and temperature coefficient 𝜏𝜏 = 0.9. For both datasets, 𝜆𝜆1 and 𝜆𝜆3 in Eq. 12 are set to 
0.1 to maintain balanced gradient scales. For the QaTa-COV19 dataset, 𝜆𝜆2 in Eq. 12 is 
set to 0.1, while for the MosMedData+ dataset, 𝜆𝜆2 is set to 0.5 due to its higher segmen-
tation difficulty, requiring a larger weight to learn more from the unlabeled data. 

Comparison with other state-of-the-art (SOTA) methods. We experiment with dif-
ferent percentages of labeled data and compare them with previous image-only and 
multi-modal methods. The quantitative results of QaTa-COV19 and MosMedData+ da-
tasets are presented in Table 1. Compared to the best image-only method, our frame-
work significantly improves segmentation performance by an average of 10.19% on 
QaTa-COV19 and 5.03% on MosMedData+, which demonstrates using text prompts 
can significantly improve the model’s ability of object localization in the case of limited 
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annotated data. Besides, our framework still achieves better performance by an average 
of 5.94% and 2.92% on two datasets respectively than existing multi-modal methods. 
Particularly, our framework in the case of 5% labeled data can achieve or even exceed 
the performance of multi-modal methods in the case of 25% labeled data, which shows 
that our model can learn more class-discriminative feature from unlabeled data and re-
duce the effect of noise in semi-supervised learning. 

Besides, the visual comparison results are shown in Fig. 2. It shows that our frame-
work can create a segmentation mask with more accurate regions and distinctive bor-
ders than other methods whether X-rays or CT images with the text prompts. 

Ablation Studies. We conduct ablation studies to validate the effectiveness of our pro-
posed modules and report the quantitative results on the QaTA-COV19 test set in Table 
2. As is shown in Table 2, each part we proposed contributes to the final performance 
improvement. Specifically, the bilateral prompt decoder (BPD) significantly improved 
segmentation performance by an average of 3.88% in 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 and 3.63% in 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 due to 

Table 1. Result comparison (%) of image-only and multi-modal methods on two available 
datasets, with the different labeled percentages. ℐ denotes image and 𝒯𝒯denotes text. 

Dataset Method 𝑆𝑆𝑆𝑆𝑆𝑆 
5% 15% 25% 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

QaTa-
COV19 

MC-Net+ (2022) [10] ℐ 73.15 61.48 75.93 65.81 76.93 67.02 
PLCT (2023) [8] ℐ 73.01 61.32 75.42 65.12 76.65 66.71 

LAVT (2022) [15] ℐ + 𝒯𝒯 74.45 64.69 77.14 65.86 77.08 67.21 
TGCPA (2023) [18] ℐ + 𝒯𝒯 76.32 65.36 79.18 69.14 80.21 70.59 
LViT-T (2023) [19] ℐ + 𝒯𝒯 77.24 66.31 79.98 70.04 80.95 71.31 
Ours ℐ + 𝒯𝒯 83.56 71.67 86.21 75.64 87.26 77.12 

MosMed 
Data+ 

MC-Net+ (2022) [10] ℐ 66.75 54.38 68.92 56.57 70.32 57.94 
PLCT (2023) [8] ℐ 66.97 54.65 69.14 56.81 70.54 58.13 

LAVT (2022) [15] ℐ + 𝒯𝒯 67.54 55.39 69.75 57.64 71.18 58.84 
TGCPA (2023) [18] ℐ + 𝒯𝒯 67.92 55.87 70.42 58.89 71.94 59.78 
LViT-T (2023) [19] ℐ + 𝒯𝒯 68.61 56.49 71.45 59.64 72.48 60.31 
Ours ℐ + 𝒯𝒯 72.46 58.12 75.73 60.93 76.46 62.69 

 

 
Fig. 2. Visual comparison of segmentation results on two datasets. 
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the multi-modal complementarity. With the proposed multi-views consistency and 
pseudo-labels supervision, the metrics increase by an average of 2.29% and 1.14% re-
spectively, which indicate that the multi-views incorporating both image and text per-
turbations can reduce the influence of noise and encourage the model to learn general-
ized representations. 

Besides, we also analyze the T-SNE decomposition of representation space with and 
without PGCL, as shown in Figure 3. Despite some boundary confusion, PGCL notably 
enhances the clustering of feature embeddings during training, fostering improved in-
ter-class separability and intra-class compactness. Conversely, without PGCL, embed-
dings from various classes become entangled in the feature space. This effectively 
demonstrates the capability of the proposed strategy to address the lack of explicit guid-
ance within the feature space.  

4 Conclusions 

In this paper, we propose Textmatch, a novel semi-supervised medical image segmen-
tation framework that explores the potential of text prompts for better segmentation 
results. Specifically, we design a Bilateral Prompt Decoder (BPD) to mine information 
from visual and linguistic features. Furthermore, we introduce a Multi-views Con-
sistency Regularization (MCR) strategy that incorporates both image and text 

 
Fig. 3. T-SNE decomposition of feature space produced by encoder and projection head at 
different training stages on QaTa-COV19 dataset (15% labeled) 𝑤𝑤/𝑤𝑤𝑤𝑤 the proposed PGCL. 

Table 2. Ablation Studies on QaTa-COV19 test set, with different labeled rates.  

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 𝐵𝐵𝐵𝐵𝐵𝐵 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 𝐿𝐿𝑝𝑝𝑝𝑝 PGCL 5% 15% 25% 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

🗸🗸     75.14 64.04 78.35 67.74 79.64 69.47 

🗸🗸 🗸🗸      79.32 67.42 82.13 71.52 83.32 73.21 

🗸🗸 🗸🗸 🗸🗸     81.79 69.91 84.53 73.98 85.27 75.23 

🗸🗸 🗸🗸 🗸🗸 🗸🗸   82.76 70.84 85.64 75.09 86.58 76.41 

🗸🗸 🗸🗸 🗸🗸 🗸🗸 🗸🗸 83.56 71.67 86.21 75.64 87.26 77.12 
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perturbations to reduce the influence of noise. Finally, we propose a Pseudo-label 
Guided Contrastive Learning (PGCL) strategy to explore class-discriminative features. 
Extensive experiments on two available datasets demonstrate the significant advantage 
of our framework compared to previous image-only and multi-modal methods. 
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