
Pair Shuffle Consistency for Semi-supervised
Medical Image Segmentation

Jianjun He1, Chenyu Cai1, Qiong Li2, and Andy J Ma1,3,4(B)

1 School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou,
China

{hejj56,caichy8}@mail2.sysu.edu.cn,
majh8@mail.sysu.edu.cn

2 Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou,
China

liqiong@sysucc.org.cn
3 Guangdong Province Key Laboratory of Information Security Technology,

Guangzhou, China
4 Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of

Education, Guangzhou, China

Abstract. Semi-supervised medical image segmentation is a practical
but challenging problem, in which only limited pixel-wise annotations
are available for training. While most existing methods train a segmen-
tation model by using the labeled and unlabeled data separately, the
learning paradigm solely based on unlabeled data is less reliable due to
the possible incorrectness of pseudo labels. In this paper, we propose a
novel method namely pair shuffle consistency (PSC) learning for semi-
supervised medical image segmentation. The pair shuffle operation splits
an image pair into patches, and then randomly shuffle them to obtain
mixed images. With the shuffled images for training, local information is
better interpreted for pixel-wise predictions. The consistency learning of
labeled-unlabeled image pairs becomes more reliable, since predictions
of the unlabeled data can be learned from those of the labeled data
with ground truth. To enhance the model robustness, the consistency
constraint on unlabeled-unlabeled image pairs serves as a regularization
term, thereby further improving the segmentation performance. Exper-
iments on three benchmarks demonstrate that our method outperforms
the state of the art for semi-supervised medical image segmentation.
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1 Introduction

Semi-supervised learning (SSL) has emerged as an important technique in medi-
cal image segmentation [10, 12, 14, 20, 22, 23], to reduce the demand of pixel-level
manual annotations which are both expensive and time-consuming to obtain.
The objective of SSL is to harness the vast amount of unlabeled data, improv-
ing the segmentation model trained by only a small amount of labeled data.
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In most existing SSL methods developed for medical image segmentation, the
labeled and unlabeled data are used separately for training. On the one hand,
supervised learning is conducted by the labeled data with pixel-level ground
truth. On the other hand, the unlabeled data is utilized under two typical learn-
ing paradigms, i.e., self-training [8, 9, 21] and consistency regularization [1, 6, 18,
19, 23]. The former generates pseudo labels for the unlabeled data to train the
model, while the latter constrains consistent predictions among different views
of an unlabeled input generated by augmentations.

Despite the success, both learning paradigms entirely based on unlabeled
data has unavoidable defects due to the lack of ground truth labels. Neither
paradigm can guarantee the correctness of the pseudo labels. This dilemma in-
spires us to consider a new SSL paradigm, which uses both labeled and unlabeled
images to synthesize mixed images for guidance in model learning by not only
ground truth but also pseudo labels. In this manner, we allow the abundant
unlabeled data to benefit from the more precise but limited ground truth labels.
Few existing methods have been proposed to address this issue. In [1], BCP
extends the copy-paste approach in a bidirectional manner, in which a labeled
image is randomly cropped and pasted onto an unlabeled image, and vice versa.
MagicNet [4] presents a data augmentation strategy to partition and recover N3

small cubes cross- and within-labeled and unlabeled images.
For pixel-wise predictions, segmentation models need to pay more attention

to local information. In this work, we propose a novel image augmentation op-
eration called pair shuffle, which divides paired images into equal-sized patches,
randomly shuffle them, and then combine them into two mixed images. Differ-
ent from existing methods, pair shuffle modifies the relative positions of patches
within an image pair. The global information is deliberately disrupted while the
local information is preserved within each patch. By inputting the shuffled im-
ages for training, the segmentation model is unable to perceive them as a whole.
Instead, local features are extracted from each patch at a finer granularity.

Based on the Mean Teacher [18] architecture, we propose the pair shuffle con-
sistency (PSC) learning with both labeled-unlabeled and unlabeled-unlabeled
image pairs. The former promotes to learn discriminative features from the la-
beled to the unlabeled data more reliably, while the latter enhances the model
robustness solely based on the large amount of unlabeled data. We feed the shuf-
fled image pair to the student model, facilitating its ability to comprehend local
information. Simultaneously, the original images are input to the teacher model
for generating pseudo labels by global interpretation. Through the consistency
constraint between the teacher and student, both global and local information
is effectively integrated, leading to the improved segmentation performance.

In summary, the main contributions of this paper are as follows. 1) We pro-
pose a novel image augmentation operation called pair shuffle, which changes the
relative positions of patches within image pairs, to train a segmentation modal for
better perceiving local information. 2) We propose an innovative method namely
pair shuffle consistency (PSC) learning for semi-supervised medical image seg-
mentation, encouraging reliable learning from the labeled to the unlabeled data.
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Fig. 1: Overview of our pair shuffle consistency (PSC) learning framework.

3) The proposed method outperforms the state of the art in various tasks such
as tumor and organ segmentation, in both binary- and multi-class scenarios.

2 Method

2.1 Overall Framework

Mathematically, we define the 2D slice of a medical image as X ∈ RH×W . The
goal of semi-supervised medical image segmentation is to predict the per-pixel
label map Y ∈ {0, 1, · · · ,K−1}H×W , where K is the number of classes and class
0 represents the background. The training set D consists of N labeled images
and M unlabeled images (N ≪ M), divided into two subsets D = Dl ∪ Du,
where Dl = (Xl

i,Y
l
i)

N

i=1 and Du = (Xu
i )

M+N
i=N+1.

The proposed pair shuffle consistency (PSC) learning method follows a teacher-
student scheme. The overall framework is depicted in Fig. 1. The teacher and
the student models are denoted as Ft(X;Θt) and Fs(X;Θs) respectively, where
Θt and Θs are the learnable parameters. The teacher model is updated by us-
ing exponential moving average (EMA) based on the student [18], i.e. Θt =
ωΘt + (1 − ω)Θs, ω ∈ (0, 1). The student model is optimized through gradient
descent of the overall loss function L given by:

L = Lsup + λps(Ll−u + Lu−u), (1)

where Lsup is the supervised loss, λps is a trade-off hyper-parameter, Ll−u and
Lu−u denote the loss functions for pair shuffle consistency learning of labeled-
unlabeled and unlabeled-unlabeled image pairs, respectively.

For the supervised loss Lsup, labeled samples are fed into the student model
to obtain prediction outputs Pl = Fs(X

l;Θs). Ground truth labels Yl are used
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Fig. 2: Illustration of pair shuffle and restoration operation.

to supervise them as shown at the bottom of Fig. 1. This loss function is defined
by combining the cross entropy (Lce) and the dice loss [15] (Ldice), i.e.:

Lsup = Lce(P
l;Yl) + Ldice(P

l;Yl). (2)

Details about the innovative pair shuffle operation and pair shuffle consistency
learning approach corresponding to the loss functions Ll−u and Lu−u are pro-
vided in the following two subsections.

2.2 Pair Shuffle Operation

The proposed pair shuffle operation is illustrated in Fig. 2. We partition a pair
of images, denoted as Xa

1 and Xb
2, into N × N equal-sized patches. The sub-

scripts a and b assume the values l or u, representing labeled or unlabeled data,
respectively. Subsequently, these 2×N ×N patches are randomly shuffled with
a specified permutation order s, resulting in two mixed images, namely Xa−b

1

and Xa−b
2 . The pair shuffle operation can be concisely formulated as follows:

Xa−b
1 ,Xa−b

2 = PS(Xa
1 ,X

b
2, N, s). (3)

After shuffling, the mixed images Xa−b
1 and Xa−b

2 are fed into the student
model and obtain their predictions, denoted as Pa−b

1 = Fs(X
a−b
1 ;Θs) and

Pa−b
2 = Fs(X

a−b
2 ;Θs), respectively. Due to the disorganized positions of the

shuffled patches, these predictions cannot be directly used for training. There-
fore, we proceed to restore them back to their original orders using the recorded
s, resulting in P̃a

1 and P̃b
2. Through our innovative pair shuffle operation, the

global information of images is intentionally disturbed. These shuffled images can
encourage model learning to exploit local information at a finer granularity from
a patch-level perspective, thereby improving the segmentation performance.

2.3 Pair Shuffle Consistency Learning

The pair shuffle operation is performed on both labeled-unlabeled and unlabeled-
unlabeled image pairs for consistency learning. To mitigate the error of pseudo
label estimation, a labeled image Xl and an unlabeled image Xu

1 are randomly
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paired to generate shuffled images Xl−u
1 and Xl−u

2 . After that, we feed the shuf-
fled images into the student model and obtain the shuffled predictions Pl−u

1 and
Pl−u

2 . By restoring to the original order, they are converted to P̃l and P̃u
1 as the

predictions of the labeled and unlabeled images, respectively. Simultaneously,
Xu

1 is input to the teacher model which outputs predictions Pu
1 . By applying

the argmax function to Pu
1 , pseudo labels for the unlabeled data are generated,

denoted as Ŷu
1 . They are then combined with the ground truth label Yl to super-

vise P̃u
1 and P̃l in the loss function Ll−u. Similar to Lsup, Ll−u is a combination

of the cross entropy and the dice loss, given by:

Ll−u = Lce(P̃
l;Yl) + Lce(P̃

u
1 ; Ŷ

u
1 ) + Ldice(P̃

l;Yl) + Ldice(P̃
u
1 ; Ŷ

u
1 ). (4)

It yields great benefit for semi-supervised medical image segmentation by
utilizing pair shuffle consistency learning with labeled-unlabeled data pairs. With
ground truth labels, available only for a limited amount of labeled data, the
unlabeled data can be guided by not only the pseudo labels from the teacher
model but also the accurate annotations. As a result, the training process with
both the labeled and unlabeled data becomes more reliable.

In addition, the proposed pair shuffle consistency learning is extended to
exclusively using unlabeled data, preventing from over-fitting to the labeled data.
Specifically, we apply the pair shuffle operation to unlabeled-unlabeled image
pairs Xu

1 and Xu
2 , resulting in mixed images denoted as Xu−u

1 and Xu−u
2 . Similar

to labeled-unlabeled pairs, these mixed images are fed into the student model to
generate their corresponding restored predictions, denoted as P̃u

1 and P̃u
2 . These

predictions are then supervised by the pseudo labels Ŷu
1 and Ŷu

2 generated by the
teacher model for optimization. Analogous to Ll−u, we design the loss function
Lu−u to facilitate the pair shuffle consistency learning of unlabeled-unlabeled
image pairs, which can be formulated as follows:

Lu−u = Lce(P̃
u
1 ; Ŷ

u
1 ) + Lce(P̃

u
2 ; Ŷ

u
2 ) + Ldice(P̃

u
1 ; Ŷ

u
1 ) + Ldice(P̃

u
2 ; Ŷ

u
2 ). (5)

By exclusively relying on unlabeled data, the consistency learning on unlabeled-
unlabeled image pairs serves as a complementary term to the former part Ll−u.
The loss function Lu−u fully utilizes the massive unlabeled data for model reg-
ularization to enhance the overall robustness.

3 Experiments

3.1 Dataset

We evaluate our method on three datasets, i.e., MLT, ACDC, and Promise12.
The division is conducted in units of 3D volumes, and we convert them into
2D slices for experiments. We collect a large-scale dataset for malignant lung
tumor (MLT) segmentation. It consists of 960 CT volumes from 949 patients,
with a total of 2,760 2D-slices. For training, validation, and testing, we used
2,400, 160, and 200 slices, respectively. The dataset was partitioned according to
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Table 1: Comparison with state-of-the-art methods on MLT dataset with Dice
(%) and HD95. The best and the second-best results are marked in bold and
underlined, respectively.

Setting 5% 10%
Method Publication Dice↑ HD95↓ Dice↑ HD95↓
MT [18] NIPS 2017 67.30 17.93 71.89 14.75

UAMT [22] MICCAI 2019 67.85 16.21 71.62 14.92
CCT [16] CVPR 2020 65.80 15.13 72.55 15.94
CPS [7] CVPR 2021 68.68 13.92 73.88 15.45

URPC [14] MICCAI 2021 69.18 14.13 74.15 15.75
MC-Net+ [20] MIA 2022 69.41 14.42 73.04 14.62
SLC-Net [12] MICCAI 2022 67.85 17.26 71.78 14.92

ICT [19] NN 2022 69.23 14.98 74.06 14.68
BCP [1] CVPR 2023 70.41 13.86 75.62 12.31

DCNet [5] MICCAI 2023 67.57 14.48 73.83 15.74
ICL [24] MIDL 2023 70.91 15.08 74.13 16.51

PSC (ours) This paper 71.89 13.19 77.44 11.10

the protocol where 5% and 10% of the images were annotated, resulting in 120
and 240 annotated images. The Automated cardiac diagnosis challenge dataset
(ACDC) [3] is a multi-class segmentation dataset including the right ventricle,
the left ventricle cavities, and the myocardium (epicardial contour more specifi-
cally). It contains multi-slice 2D cine cardiac MR imaging samples from 100 pa-
tients, and is split into 70/10/20 for train/val/test. We set the amount of labeled
patients to 7 (10%) following [13]. The Prostate MR Image Segmentation 2012
(Promise12) [11] is the dataset of the prostate segmentation challenge in MICCAI
2012. We divide 50 T2-weighted MRI volumes into 35/5/10 for train/val/test.
We experiment with 7 annotated training volumes (20%) following [12].

3.2 Evaluation Metrics and Implementation Details

We use several well-known metrics in medical image segmentation, including
Dice similarity coefficient (Dice), which is a set similarity measurement function.
Additionally, we use the 95% Hausdorff Distance (HD95) and Average Surface
Distance (ASD) which can reflect the segmentation accuracy of the boundary.

UNet [17] is employed as the backbone network F . For all the experiments,
we train for 300 epochs using the SGD optimizer with a momentum of 0.9 and
weight decay of 1×10−4. The learning rate η0 of Fs(X; θs) is set to 1×10−2, with
a poly scheduler η = η0 × (1− iter/max_iter)0.9 as in [19]. We set λps = 1.0 in
Eq. 1 for all the datasets and experiment settings. The N in Eq. 3 is determined
empirically as N = 4 for ACDC and N = 8 for MLT and Promise12. For pre-
processing, we randomly apply rotation and flipping to all images, and then scale
them to the same size of 256× 256.

3.3 Comparison with State-of-the-Art Methods

Results on MLT. We compare the proposed PSC on the MLT dataset with the
existing competitors. Results of different methods are reproduced in the same
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Table 2: Comparison with state-of-the-
art methods on ACDC dataset with Dice
(%), HD95 and ASD.

Method Publication Dice↑ HD95↓ ASD ↓
MT [18] NIPS 2017 87.53 4.58 1.64

UA-MT [22] MICCAI 2019 86.34 5.32 1.55
CCT [16] CVPR 2020 87.74 4.65 1.41
CPS [7] CVPR 2021 85.03 9.06 2.84

URPC [14] MICCAI 2021 86.93 4.56 1.36
MC-Net+ [20] MEDIA 2022 86.98 5.36 1.51

ICL [24] MIDL 2023 88.18 2.46 0.69
ICT [19] NN 2022 87.15 6.03 1.78
BCP [1] CVPR 2023 88.84 3.98 1.17
CL [2] CVPR 2023 89.10 4.98 1.80

DCNet [5] MICCAI 2023 89.55 4.69 1.58
PSC (ours) This paper 90.29 1.75 0.61

Table 3: Comparison with state-of-the-
art methods on Promise12 dataset with
Dice (%), HD95 and ASD.

Method Publication Dice↑ HD95↓ ASD ↓
MT [18] NIPS 2017 75.30 13.87 3.95

UA-MT [22] MICCAI 2019 73.16 14.31 4.15
CCT [16] CVPR 2020 74.88 9.12 4.09
CPS [7] CVPR 2021 73.84 11.92 3.55

URPC [14] MICCAI 2021 75.83 9.83 2.72
MC-Net+ [20] MEDIA 2022 75.64 8.58 3.25
SLC-Net [12] MICCAI 2022 75.91 10.23 3.13

ICT [19] NN 2022 76.74 10.49 3.26
BCP [1] CVPR 2023 81.09 7.37 3.49

DCNet [5] MICCAI 2023 78.89 7.41 3.45
ICL [24] MIDL 2023 78.86 7.15 2.51

PSC (ours) This paper 83.64 4.58 2.04

experimental setting for fair comparisons. As shown in Table 1, our method
achieves the best performance on both evaluation metrics, outperforming other
competitors on Dice and HD95 (i.e., surpassing the second best by 0.98 per-
centage point (pp) and 0.67 on 5% setting, 1.82pp and 1.21 on 10% setting,
respectively). By employing our PSC, the local information within patches is
effectively integrated with the global information of images through consistency
learning, thereby improving the performance of tumor segmentation.
Results on ACDC. Table 2 shows the averaged performance of the four-class
segmentation results on the ACDC dataset with 10% labeled ratio. Our PSC
surpasses the state of the arts. This suggests that during the training phase,
blending the information from labeled and unlabeled data proves more benefi-
cial in harnessing the limited labeled ground truth, compared to the paradigm of
training them isolatedly. Specifically, the proposed PSC improves the segmenta-
tion performance over BCP, proving that altering the relative positions to better
exploit local information at a finer granularity is beneficial for segmentation.
Results on Promise12. In Table 3, we summarize the results on the Promise12
dataset. Noticeable improvements compared with second-best method can be
seen for Dice(↑), HD95(↓) and ASD(↓) with 2.55pp, 2.57 and 0.47 respectively.
It demonstrates that PSC successfully transfers ground truth information to
unlabeled data and concentrating on the local information within the patches
improves the segmentation performance.

3.4 Ablation Studies

We conduct ablation studies to show the impact of each component in PSC on
the ACDC dataset with 10% labeled ratio.
Different Choices of Shuffle Strategies. As shown in Table 4, we investigate
the effectiveness of the loss functions in Eq. 1. By using Ll−u and Lu−u inde-
pendently, the performance improves over the supervised-loss-only baseline by
11.69pp and 11.15pp respectively. When using both of them, PSC significantly
outperforms the baseline with only LSup by a larger margin of 12.82pp. We
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Table 4: Results with different shuffle strategies on ACDC.
Lsup Ll−u Lu−u Lu Dice ↑ HD95 ↓ ASD ↓
✓ 77.47 10.44 2.82
✓ ✓ 88.56 3.74 1.31
✓ ✓ 89.16 3.42 1.24
✓ ✓ 88.62 4.67 1.25
✓ ✓ ✓ 90.29 1.75 0.61
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factor λps.

additionally evaluate a loss function Lu, which entails performing the random
shuffle operation and consistency learning to individual unlabeled images instead
of image pairs. Using Lu performs poorly comparing with the results of using
either Ll−u or Lu−u. All comparisons demonstrate the validity and rationality
of our proposed pair shuffle operation and the pair shuffle consistency learning
that jointly utilizes labeled-unlabeled and unlabeled-unlabeled image pairs to
effectively leverage labeled and unlabeled data within the same training process.
Different Number of Patches. As depicted in Fig. 3, the impact of the split-
ting number (N in the Eq. 3) in the pair shuffle operation is studied. The best
performance is achieved by taking N = 4. On one hand, when N is small, the
images cannot be sufficiently disrupted, causing the model to still focus on global
information rather than the local details. On the other hand, a large N runs the
risk of inadvertently dividing objects into different patches, resulting in the loss
of necessary holistic information associated with those objects.
Different Weight in Loss Function. We further evaluate the sensitivity of
the hyper-parameter λps in Eq. 1. As illustrated in Fig. 4, it is observed that
λps should neither be excessively small nor overly large, with the optimal perfor-
mance achieved when λps = 1.0. From a theoretical perspective, as our method
integrates labeled and unlabeled data within the same training paradigm and
the specific forms of all three loss functions (Lsup, Ll−u, and Lu−u) are a combi-
nation of cross entropy and dice loss, these loss functions hold equal importance.
Therefore, by setting λps = 1.0 without specifying different values, PSC achieves
the best performance.
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4 Conclusion

We present a novel augmentation method called pair shuffle and propose the pair
shuffle consistency (PSC) learning for semi-supervised medical image segmenta-
tion. Our method leverages both the labeled and unlabeled data concurrently, to
improve the learning reliability and model robustness. With the pair shuffle op-
eration, local information within patches is effectively utilized by training with
the shuffled images. Through consistency constraints between the shuffled and
non-shuffled images, local information is effectively integrated with the global
information. Extensive experiments demonstrate that the proposed method out-
performs the state of the arts for semi-supervised medical image segmentation.
The shuffling operation could split the objects and introduce artefacts at the
boundaries of patches in some scenarios. We will explore this potential limita-
tion in our future work.
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