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Abstract. Adversarial learning helps generative models translate MRI
from source to target sequence when lacking paired samples. However,
implementing MRI synthesis with adversarial learning in clinical settings
is challenging due to training instability and mode collapse. To address
this issue, we leverage intermediate sequences to estimate the common
latent space among multi-sequence MRI, enabling the reconstruction of
distinct sequences from the common latent space. We propose a genera-
tive model that compresses discrete representations of each sequence to
estimate the Gaussian distribution of vector-quantized common (VQC)
latent space between multiple sequences. Moreover, we improve the latent
space consistency with contrastive learning and increase model stability
by domain augmentation. Experiments using BraTS2021 dataset show
that our non-adversarial model outperforms other GAN-based methods,
and VQC latent space aids our model to achieve (1) anti-interference
ability, which can eliminate the effects of noise, bias fields, and artifacts,
and (2) solid semantic representation ability, with the potential of one-
shot segmentation. Our code is publicly available 7.

Keywords: Latent Space · MRI synthesis · Multi-Sequence MRI.

1 Introduction

Multi-sequence magnetic resonance imaging (MRI) is a commonly used diagnos-
tic tool that provides clinicians with a comprehensive view of tissue character-
7 https://github.com/fiy2W/mri_seq2seq
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istics [4, 14, 13]. However, some sequences may be unusable or absent in clinical
practice for various reasons [3], leading to the need for rescanning or disrupt-
ing downstream processes. To avoid this, deep generative models can be used
to synthesize these missing sequences, but require many paired training data
to produce high-quality results. In cases lacking paired data among source and
target sequence, most studies [16, 11, 6] rely on generative adversarial networks
(GANs) [7] to minimize the distribution distance between the generated and
the target sequence. However, it can also lead to training instability and mode
collapse, harming the image quality and structure.

Using intermediate sequences in multi-sequence MRI can make unsupervised
generation less challenging. For example, if we have paired T1-weighted (T1) and
T2-weighted (T2) MRI for one population and paired T2 and fluid-attenuated
inversion recovery (Flair) MRI for another, we can use T2 to establish the re-
lationship between T1 and Flair without paired samples. Compared to single-
task models [16, 6], dynamic models [11, 5, 8] controlled by a prompt branch
can integrate multiple generation tasks to utilize intermediate sequences. Han et
al. [8] use a shared encoder to extract structural features from images, which
are then rendered to target images with the guidance of a one-hot code. Jiang et
al. [11] disentangle images into structure and style features and reconstruct tar-
get images using target styles and source structures. These methods preserve the
structure consistency but ignore the distribution differences between the latent
spaces of distinct sequences, hindering the model from learning the mapping of
the common latent space to the target sequence.

In this work, we construct a common latent space for multi-sequence MRI
so that all sequences can be mapped from it. Specifically, we first utilize VQ-
VAE [17] to compress images into a discrete latent space, then estimate the
distribution of the vector-quantized common (VQC) latent space based on these
representations. Finally, we leverage a dynamic model Seq2Seq [8] to generate
arbitrary target sequences from the VQC latent space. The VQC latent space
has three primary advantages: (1) achieving unsupervised synthesis without re-
quiring adversarial learning; (2) preventing input interference, such as noise,
artifacts, and field bias; and (3) having reliable semantic representation, which
shows the potential of one-shot segmentation.

2 Methods

2.1 Preliminary

VQ-VAE Compared with the continuous latent space of VAE [12], the discrete
latent space of VQ-VAE captures more structured features while ignoring some
irrelevant details, e.g., artifacts. Given an encoder E and a decoder G, we can
map image X into a continuous latent space ze = E(X) with a latent dimension
of D, while G can restore X from ze. Then, using a codebook ek with the
embedding dimension of K to map ze to the nearest vectors in the codebook.

zq(ze) = ek, k = argmin
i

∥ze − ei∥ (1)
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Fig. 1. Overview of the proposed VQ-Seq2Seq framework.

where the vector quantizing process is not differentiable, requiring an improved
training loss,

Lvqvae = ∥X −G(ze + sg [zq − ze])∥22 + ∥sg [ze]− zq∥22 + β · ∥sg [zq]− ze∥22 (2)

where sg [·] indicates a stop-gradient operation, and β = 0.25 ensures that ze
remains in proximity to zq. To simplify the expression, we denote ze+sg [zq − ze]
as zq and merge the last two terms of Eq. 2 as Lvq in the following sections.

Dynamic Model Dynamic models [11, 5, 8] combine different generation tasks
in a single model, which can utilize intermediate sequences. With a set of N
sequences MRI X = {Xi, fi|i = 1, ..., N}, Xi is available if fi = 1, otherwise
fi = 0 and the sequence is missing. The process of translating Xi to Xj is,

X̂i→j = G(E(Xi), cj) (3)

where G refers to a dynamic decoder which input with structure feature E(Xi)
and style feature cj . In particular, cj can be represented as a one-hot encoding for
the target sequence [5, 8] or a style feature extracted from the target image [11].
In this work, we use Seq2Seq [8] as the baseline because the model is a simple
autoencoder, which makes it easy to integrate the VQ module into the model.

2.2 VQ-Seq2Seq

Inheriting the advantages of discrete representations and dynamic models, we
propose VQ-Seq2Seq to establish the VQC latent space for multi-sequence MRI.
As shown in Fig. 1, continuous latent space ze and corresponding discrete latent
space zq are extracted from the input images. By statistics on zq, we can estimate
a VQC latent space containing sampling points zs that can reconstruct images
of different sequences through the dynamic decoder G.

Uncertainty Estimation It is challenging to strictly constrain multi-sequence
MRI equal in latent space because one sequence involves specific information
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that other sequences lack [16, 8]. To tolerate the sequence-specific attributes, we
depict the probabilistic scope of zq among different sequences by considering the
uncertainty of the latent space. We propose a simple non-parametric method
using the statistics of zq for uncertainty estimation.

µq(X ) =
1∑N

i=1 fi

fi ̸=0∑
i

zq(Xi)

σ2
q (X ) =

1∑N
i=1 fi − 1

fi ̸=0∑
i

(zq(Xi)− µq(X ))2

(4)

VQC Latent Space After obtaining the uncertainty estimation, we can estab-
lish a Gaussian distribution for probabilistic statistics. To utilize randomness in
further modeling the uncertainty, we use random sampling to draw the VQC
latent space from the corresponding distribution randomly.

zs = µq(X ) + ϵ · σ2
q (X ), ϵ ∼ N (0, 1) (5)

Here, we use the re-parameterization trick to make the sampling operation dif-
ferentiable, and ϵ follows the standard Gaussian distribution.

2.3 Loss Function

Pixel-Level Reconstruction We establish constraints between the generated
image X̂ and the target image X at the pixel, structural, and perceptual levels,

Lrec(X̂,X) = λ1 · ∥X̂ −X∥1 + λ2 · Lssim(X̂,X) + λ3 · Lper(X̂,X) (6)

where ∥ · ∥1 refers to the L1 loss, Lssim indicates the SSIM loss [18], and Lper
presents the perceptual loss [19] based on pre-trained VGG19. λ1, λ2, and λ3

are weight terms and are experimentally set to be 10, 1, and 0.1.

Latent Space Consistency We ensure that zq of sequences are close to nar-
rowing the scope of VQC latent space. For two zq (z1 and z2), we define a
consistency loss composed with MSE and contrastive learning loss [15, 9].

Lcon(z1, z2) = ∥sg [z1]− z2∥22 + ∥sg [z2]− z1∥22

−
∑
p∈M

log
exp (z

(p)
1 · z(p)2 /τ)∑

q∈M exp (z
(p)
1 · z(q)2 /τ)

· exp (z
(p)
2 · z(p)1 /τ)∑

q∈M exp (z
(p)
2 · z(q)1 /τ)

(7)

where p and q are features traversed from pixels in foreground of z1 and z2,
τ = 0.07 refers to the scalar temperature parameter.
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Total Loss We formulate the total loss function using intermediate sequences
without adversarial learning.

Ltotal =

fi ̸=0∑
i

fj ̸=0∑
j

Lrec(X̂i→j , Xj) +

fi ̸=0∑
i

Lrec(X̂s→i, Xi)

+λcon ·
fi ̸=0∑

i

fj ̸=0∑
j

Lcon(zq(Xi), zq(Xj)) + λvq ·
fi ̸=0∑

i

Lvq(ze(Xi), zq(Xi))

(8)

where X̂i→j = G(zq(E(Xi)), cj) and X̂s→j = G(zs, cj) are images generated
from zq and zs, respectively. λcon and λvq are both experimentally set to be 10.

2.4 Random Domain Augmentation

We use random domain augmentation for input images during training to further
improve the stability of VQ-Seq2Seq and the anti-interference ability of VQC
latent space. The domain augmentation process has three aspects: (1) simple in-
tensity transformation T (e.g., gamma transformation, random noise, and bias
field); (2) cross-sequence translation with one-hot codes cr; and (3) random do-
main translation with random target codes cr ∼ U(0, 1). The latter two augmen-
tation methods allow us to generate an augmented image Xaug = G(zq(Xi), cr)
from the input image Xi, and the first method makes Xaug = T (Xi). During
training, we will randomly replace the input image Xi with one of Xaug.

3 Experiments

3.1 Experimental Settings

Dataset and Evaluation Metrics We utilize brain MRI images from the
Brain Tumor Segmentation 2021 (BraTS2021) dataset [14, 2, 1], comprising 1,251
subjects with four aligned sequences: T1, T1Gd, T2, and Flair. From this dataset,
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Fig. 2. Synthesis performance of VQ-Seq2Seq with different latent dimensions (D) and
embedding dimensions (K). (a) Synthesis performance with different latent dimensions
(K = 256); (b) Synthesis performance with different embedding dimensions (D = 3).
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Table 1. The quantitative results of translating T1 to T1Gd, T2, and Flair with a single
step or multiple steps. The best result is in bold, and the second best is underlined.

Step Method T1→T1Gd T1→(T1Gd)→T2 T1→(T1Gd→T2)→Flair
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Single

MM-GAN [16] 26.5±2.0 0.871±0.044 11.4±4.2 22.2±1.0 0.779±0.028 20.5±3.4 21.7±1.2 0.791±0.039 17.8±3.1
ResViT [6] 26.4±2.0 0.872±0.040 11.6±4.1 21.8±0.9 0.774±0.035 16.1±3.2 20.9±0.9 0.705±0.035 20.0±3.4
Jiang et al. [11] 26.7±2.7 0.874±0.044 10.4±4.1 23.7±2.2 0.833±0.039 12.3±3.9 23.5±2.4 0.796±0.054 11.9±3.6
Seq2Seq [8] 26.9±2.2 0.876±0.040 9.68±3.74 26.5±1.9 0.884±0.039 8.25±3.32 24.3±2.3 0.811±0.047 11.2±3.5

+VQ 27.0±2.2 0.875±0.040 9.79±3.67 26.7±1.9 0.885±0.038 8.05±3.22 24.6±2.3 0.817±0.043 11.0±3.5
+VQ+Lcon 27.1±2.1 0.876±0.039 9.67±3.61 26.8±1.9 0.886±0.038 7.85±3.30 24.7±2.2 0.823±0.040 10.8±3.4

VQ-Seq2Seq 27.1±2.1 0.876±0.039 9.78±3.49 27.1±1.9 0.890±0.036 7.63±3.07 25.7±1.9 0.847±0.033 9.86±3.05
w/o Aug 27.0±2.0 0.875±0.038 9.71±3.41 26.8±1.8 0.883±0.036 8.23±3.17 24.1±2.2 0.805±0.050 11.4±3.5

Multiple

MM-GAN [16] - - - 25.4±1.7 0.866±0.037 10.9±3.4 24.9±1.3 0.826±0.032 14.2±3.4
ResViT [6] - - - 25.7±1.7 0.861±0.032 10.7±3.2 24.9±1.1 0.826±0.037 14.5±4.2
Jiang et al. [11] - - - 26.0±1.9 0.874±0.037 9.70±3.16 25.3±1.6 0.835±0.030 10.5±3.8
Seq2Seq [8] - - - 26.4±1.8 0.883±0.037 7.94±3.03 25.5±1.5 0.843±0.029 9.83±2.84

+VQ - - - 26.4±1.8 0.878±0.037 8.15±2.98 25.5±1.5 0.839±0.028 9.83±2.65
+VQ+Lcon - - - 26.6±1.8 0.881±0.036 7.74±2.89 25.7±1.6 0.843±0.028 9.63±2.67

VQ-Seq2Seq - - - 26.8±1.8 0.884±0.035 7.63±2.76 25.9±1.5 0.846±0.028 9.47±2.56
w/o Aug - - - 26.6±1.7 0.877±0.034 8.23±2.81 25.7±1.4 0.840±0.028 11.1±2.7

we allocated 830 subjects for training, 93 for validation, and 328 for testing. To
simulate clinical settings with missing sequences, we divided the training set into
three subsets, which contained paired sequences between (T1, T1Gd), (T1Gd,
T2), and (T2, Flair), respectively. It can be simulated that there is no paired sam-
ple between T1 and Flair under this setting, but there are two partially paired
intermediate sequences, T1Gd and T2. All images undergo intensity normaliza-
tion to a range of [0, 1] and are subsequently centrally cropped to dimensions of
128×192×192. Synthesis performance is evaluated using metrics including peak
signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and
learned perceptual image patch similarity (LPIPS).

Implementation Details We implemented the models using PyTorch and
trained them on the NVIDIA GeForce RTX 3090 Ti GPU. The architecture of
E and G is the same as Seq2Seq [8]. The proposed VQ-Seq2Seq is trained using
the AdamW optimizer, with an initial learning rate of 10−4 and a batch size of
1 for 1,000,000 steps. All comparative experiments use domain augmentation,
at least with simple intensity transformation T , to ensure a fair comparison. T
involves applying random gamma transformation with γ ∼ U(0.95, 1.05), random
Gaussian noise with σ ∼ U(0, 0.1), and random bias field with scale of 0.2 and
degree of intensity inhomogeneity α ∼ U(0, 2).

3.2 Experimental Results

Latent and Embedding Dimension Referring to Sec. 2.1, the latent dimen-
sion D represents the dimension of the compressed feature. The smaller D is,
the greater the degree of compression. The embedding dimension K indicates
the number of discrete vectors (clustering) in the codebook. The larger K is, the
better a discrete vector fits the continuous features. We train VQ-Seq2Seq using
the training sets with complete sequences to explore the optimal D and K be-
fore other experiments. As shown in Fig. 2, when K = 256, the proposed model
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Fig. 3. Visualization of translating T1 to T1Gd, T2, and Flair with a single step.

Table 2. The quantitative results for comparisons of reconstructing images based on
noise and bias field data. The best result is in bold, and the second best is underlined.

Method Noise Bias Field
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

MM-GAN [16] 29.0±0.5 0.860±0.028 20.6±5.1 22.1±0.7 0.928±0.015 5.56±1.43
ResViT [6] 28.6±2.3 0.851±0.023 19.8±8.6 20.0±1.7 0.914±0.016 6.37±1.88
Jiang et al. [11] 30.1±1.8 0.895±0.021 10.3±3.1 21.2±0.8 0.924±0.019 5.98±1.18
Seq2Seq [8] 28.2±2.6 0.861±0.024 14.6±3.9 22.0±1.2 0.927±0.019 5.49±1.23

+VQ 29.0±2.9 0.877±0.027 10.7±3.1 22.4±1.2 0.928±0.018 5.14±1.31
+VQ+Lcon 30.3±1.5 0.891±0.017 9.38±2.73 22.6±1.4 0.930±0.019 5.09±1.27

VQ-Seq2Seq 30.3±1.5 0.902±0.016 7.02±1.73 26.1±2.6 0.930±0.020 5.09±1.51
w/o Aug 29.2±2.5 0.864±0.044 10.7±2.9 22.6±1.6 0.916±0.019 6.23±1.46

performs the best when D = 3. Additionally, when D = 3, the performance of
the model continues to improve as K increases, but the rate of improvement
slows down after K > 256. Thus, we set D = 3 and K = 256 in this work.

Latent Space Consistency To evaluate the effectiveness of the proposed
VQC latent space for unsupervised cross-sequence generation, we compared VQ-
Seq2Seq with other methods such as MM-GAN [16], ResViT [6], Jiang et al. [11],
and Seq2Seq [8]. Additionally, we compared the three components of our method,
which include VQ embedding, VQ with Lcon, and domain augmentation. There
are two ways to implement a source→target generation: (1) generate the tar-
get directly from the source (single-step), and (2) first generate an intermediate
sequence from the source and then generate the target (multi-step). Table 1
and Fig. 3 illustrate the synthesis performance of comparisons on translating
T1→T1Gd, T1→T2, and T1→Flair. Note that, due to the settings of paired
samples in the training set, the multi-step generation between T1 and T2 requires
two steps, and between T1 and Flair requires three steps. As shown in Table 1,
the comparison method achieves similar performance for the T1→T1Gd gener-
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Fig. 4. Visualization of reconstruction from input images with artifacts, noise, and bias
field. Artifacts exist in the original images, therefore, the target image is unavailable.

Table 3. The quantitative one-shot segmentation results for using latent space from
comparisons. The best result is in bold. ET: enhanced tumor, TC: tumor core, WT:
whole tumor.

Method DSC↑ ASSD↓
ET TC WT ET TC WT

nnU-Net [10] 0.481±0.298 0.457±0.308 0.463±0.231 12.7±11.9 13.7±11.2 14.2±7.1
Jiang et al. [11] 0.193±0.276 0.175±0.272 0.328±0.272 24.3±10.3 23.6±10.6 15.9±8.8
Seq2Seq [8] 0.276±0.234 0.274±0.224 0.386±0.206 19.3±9.4 19.4±8.4 15.6±5.4
VQ-Seq2Seq 0.557±0.275 0.532±0.301 0.638±0.201 6.46±9.74 8.18±9.97 9.36±5.96

ation task with paired samples. However, when it comes to unpaired T1→T2
and T1→Flair generation tasks, the performance of the comparison method de-
creases sharply when performing single-step generation compared to multi-step
generation. In contrast, the proposed VQ-Seq2Seq shows only a minor perfor-
mance penalty on T1→Flair task and improves on T1→T2 task. This shows that
multi-step generation will lead to information loss and error accumulation, and
our VQ-Seq2Seq can alleviate this problem through single-step generation.

Anti-Interference The proposed VQC latent space also has the anti-interference
ability. We add fixed Gaussian noise and bias fields to the input image and re-
construct the input image using the comparisons. As shown in Table 2, the
proposed method can effectively prevent the interference of noise and bias fields
to reconstruct the original image. Fig. 4 shows the visualization results of the
reconstruction, in which we found that the proposed model can also remove
artifacts in images.

Compression and Representation The proposed VQC latent space show-
cases strong representation ability, indicating the potential of one-shot segmen-
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Fig. 5. One-shot segmentation performance of VQ-Seq2Seq with different embedding
dimensions (K).

tation. To demonstrate this, we train the nnU-Net model based on the VQC
latent space for brain tumor segmentation. For this purpose, we only use one
subject containing all sequences for training. As shown in Table 3, the segmen-
tation model trained based on the VQC latent space outperforms the model
trained using only images. Furthermore, Fig. 5 shows that fewer VQ embedding
dimensions K = 16 contribute towards the clustering of image semantics, which
improves the segmentation performance.

4 Conclusion

In this work, we introduce a network for estimating the distribution of VQC la-
tent space, which inherits the advantage of discrete representations and dynamic
models. Experimental results based on BraTS2021 demonstrate that this latent
space contributes to cross-sequence generation without adversarial learning and
has substantial anti-interference and representation ability.
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