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Abstract. In the field of intelligent healthcare, the accessibility of med-
ical data is severely constrained by privacy concerns, high costs, and
limited patient cases, significantly hindering automated clinical assis-
tance. Though previous efforts have been made to synthesize medical
images via generative models, they are limited to static imagery that
fails to capture the dynamic motions in clinical practice, such as con-
tractile patterns of organ walls, leading to vulnerable prediction in diag-
nostics. To tackle this issue, we propose a holistic paradigm, VidMotion,
to boost medical image analysis with generative medical videos, repre-
senting the first exploration in this field. VidMotion consists of a Motion-
guided Unbiased Enhancement (MUE) to augment static images into dy-
namic videos at the data level and a Motion-aware Collaborative Learn-
ing (MCL) module to learn with images and generated videos jointly
at the model level. Specifically, MUE first transforms medical images
into generative videos enriched with diverse clinical motions, which are
guided by image-to-video generative foundation models. Then, to avoid
the potential clinical bias caused by the imbalanced generative videos,
we design an unbiased sampling strategy informed by the class distribu-
tion prior statistically, thereby extracting high-quality video frames. In
MCL, we perform joint learning with the image and video representation,
including a video-to-image distillation and image-to-image consistency,
to fully capture the intrinsic motion semantics for motion-informed di-
agnosis. We validate our method on extensive semi-supervised learning
benchmarks and justify that VidMotion is highly effective and efficient,
outperforming state-of-the-art approaches significantly. The code is avail-
able at https://github.com/CUHK-AIM-Group/VidMotion.

Keywords: Medical image analysis · Generative medical videos · Motion-
informed diagnosis · Semi-supervised learning

1 Introduction

The explosion of large models [35,2] has profoundly impacted our daily life,
primarily driven by the extensive data availability [30]. However, acquiring ade-
quate medical images is particularly challenging [5,20,15,23] in the medical field

mailto:wymanbest@outlook.com
mailto:yxyuan@ee.cuhk.edu.hk
https://github.com/CUHK-AIM-Group/VidMotion


2 Li et al.

Fig. 1. Illustration of (a) existing pipelines and (b) the proposed VidMotion framework.

due to privacy concerns, high costs, and limited patient cases [34,9], posing sig-
nificant hurdles to developing diagnosis systems [32,26,22,14,27] and the medical
community [37,7,3,24].

To break through this barrier, considerable progress [32,28,1] has been made
to scale up data with medical image synthesis, which can broaden the diversity of
datasets with generative models [32,12,2]. The authors in [28] employ diffusion
models to achieve style translation, effectively bridging medical domain gaps.
Allmendinger et al. [1] and Frisch et al. [5] tackle the imbalanced medical imaging
generation by delving into rare diseases and surgical operations. Some works [8]
focus on synthesizing tumor cases to improve tumor detection. Recently, there
have been notable strides in generating various data types, such as lung CT,
retina, and pathological images [32], enriching the data resource significantly.

Despite the great progress, existing works predominantly focus on synthe-
sizing static images, which fail to capture the dynamic nature of clinical en-
vironments, such as surgical movement [25] and blood flow, undermining the
robustness and accuracy of clinical practice. To this end, it is natural to draw
inspiration from medical videos enriched with motion-based semantics. Com-
pared with static imaging, the dynamic nature of videos can model richer and
more critical cues, such as subtle movements and the progression of symptoms
over time, which are essential for accurate disease identification and monitor-
ing [33]. Recently, some works [6,2,11] have just emerged to explore video gener-
ation beyond individual images. AnimateDiff [6] and Stable Video Diffusion [2]
design powerful motion modules to capture temporal dependence, bringing the
generation to a new level.

Hence, as the first exploration, this paper aims to boost medical image anal-
ysis via generative medical videos, thereby enabling the perception of clinical
motions. However, there are two challenges in achieving such a reliable motion-
informed diagnostic. First, directly enhancing medical images for all classes
equally with generative videos will exacerbate the class imbalance issue [5], be-
cause head classes tend to yield imbalanced video generation, leading to biased
diagnoses. Second, as shown in Fig. 1(a), current methods mainly learn with
static images, failing to capture video-based dynamics. Compared with static
images, the dynamic motions captured in videos, e.g., subtle movements of mu-
cosal surfaces, contractile patterns of organ walls, and the dynamic interaction
between instruments and tissues, provide invaluable information in clinical as-
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Fig. 2. Overview of our VidMotion. (a) MUE generates medical videos and conducts
unbiased sampling. (b) MCL learns motion semantics with images and videos jointly.

sessment [25]. Thus, a meticulous understanding of video-based motion patterns
is imperative for enhancing medical image analysis and therapeutic strategies.

To tackle the challenge, we propose a holistic framework, VidMotion, to boost
medical image analysis with video-driven motion, as shown in Fig. 1(b). VidMo-
tion consists of Motion-guided Unbiased Enhancement (MUE) to augment static
images with generative medical videos unbiasedly and Motion-aware Collabora-
tive Learning (MCL) to capture the video dynamics. Specifically, MUE enhances
medical images into short videos enriched with diverse clinical motions and con-
ducts unbiased sampling to gather reliable frames statistically. Then, MCL de-
ploys video-to-image distillation and image-to-image consistency to capture the
motion-based semantics, thereby improving the diagnosis with video dynamics.
Considering that the generated videos can boost various types of data, we pre-
liminarily evaluate VidMotion with the semi-supervised learning (SSL) diagnosis
benchmark, i.e., a clinically practical setting using labeled data and unlabeled
data, to thoroughly assess the capacity of both supervised and unsupervised
scenarios [29,21,16]. Extensive experiments verify that VidMotion significantly
surpasses SOTA methods. Besides methodology contributions, our synthesized
high-quality videos can contribute to medical research greatly.

2 Methodology

In SSL, we have labeled data X l = {(xl
i, y

l
i)}

Bl
i=1 and unlabeled data Xu =

{(xu
i )}

Bu
i=1 to train the model, where Bl and Bu denotes the corresponding batch

size. The overview of the proposed VidMotion is shown in Fig. 2. Given the
labeled and unlabeled data {X l, Xu}, MUE (Fig. 2(a)) uses leverages the frozen
Stable Video Diffusion [2] model1 to generate N video frames {V l, V u} for each
image, and then conducts unbiased sampling to collect a sub-set of video frames
X̃ l/u ⊂ V l/u. Next, the sampled video frames Ṽ l/u and complete video streams
V l/u are sent to a learnable image encoder and frozen video encoder to generate

1 The used SVD is pre-trained on large-scale online videos with superior generalization
capacity, spreading natural and medical domains.
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image X̃l/u = {xi,k}B,K
i=1;k=1 and video embedding Vl/u = {vi}Bi=1, respectively,

where K is the number of sampled frames. Finally, MCL (Fig. 2(b)) distills
motion semantics from videos to boost the image representation.

2.1 Motion-guided Unbiased Enhancement

Different from existing works [31,13] only using static images, we aim to synthe-
size medical videos with motion semantics, which is crucial for enhancing model
robustness against clinical motions, e.g., the instrument movements. To this end,
we leverage Stable Video Diffusion [2], an advanced video generative model, to
generate videos from medical images. Specifically, the generation process is for-
mulated with a diffusion process in a Markov chain, which can generate video
data v0 from the noise vT ∼ N (0, 1) via a T -step denoising process guided by a
specific condition. In this process, we use the labeled and unlabeled data as the
diffusion condition to guide the generation, enabling the videos to have similar
content with images. The generation process is as follows given image x,

pθ(v0:T |x, γ) = p(vT )
T∏

t=1

pϕ(vt−1 | vt, x, γ), (1)

where ϕ is the pre-trained Stable Video Diffusion model [2], pϕ() indicates the
estimated conditional distribution for generated medical videos, γ ∈ [0, 255] is
a constant controlling the motion intensity of generated videos. Then, for each

image batch X l/u = {xl/u
i }Bi=1, a set of synthesized videos V l/u = {xl/u

i=1}Bi=1

are obtained to model diverse motions, where v
l/u
i = {(vl/ui,1 , x

l/u
i,2 , x

l/u
i,3 , ..., x

l/u
i,N )}

indicates the video frames generated by image x
l/u
i , and N is the number of

frames. In our experiments, we find that generated videos adhere to satisfactory
physical rationality, effectively simulating various motions in clinical practice,
e.g., spatial translation, liquid flow, shake blur, etc. (see Fig. 3 for visualization)
Unbiased Sampling. As medical data significantly suffers from class imbal-
ance, the rare cases are overshadowed by an abundance of common cases, detri-
mentally influencing model learning and diagnosis accuracy. This issue becomes
more pronounced [5] when scaling up data with videos since the prevalent classes
yield more video frames with larger medical diversity. To avoid such negative
influence, we deploy a simple yet effective mechanism to conduct unbiased sam-
pling on the generated video frames according to the class distribution prior.
Specifically, given C classes with Nc labeled samples for class c, we collect a
subset of video frames X̃ l/u with the guidance of the class frequency:

X̃ l/u = RandomSample(V l/u, ⌈α · |V l/u|⌉), where α =
1
Nc∑C

j=1
1
Nj

, (2)

and V = {vi} is all synthesized videos. Thus, the proposed unbiased sampling
enhances the rare classes by collecting more frame images, promoting a balanced
distribution for diagnostic fairness without clinical bias.
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2.2 Motion-aware Collaborative Learning

With the generated videos V l/u and the sampled image frames X̃ l/u, we aim to
conduct collaborative learning between the image and video modalities. Consid-
ering that the video contains rich temporal information and motion cues, the
model is encouraged to generate motion-robust predictions for clinical practice.
Specifically, the sampled video frames X̃ l/u with |X̃ l/u| = Kl/u are sent to the
image encoder to generate image embedding X, where the labeled data yields
Xl ∈ RBl×Kl×D′

and the unlabeled data is conducted strong/weak augmenta-
tion [31] to yield Xu

s and Xu
w, where Xu

s/w ∈ RBu×Ku×D′
. At the same time,

we send generated videos V l/u to a pre-trained video encoder [35] to encode
temporal-aware knowledge, yielding the video embedding Vl/u ∈ RBl/u×D.
Video-to-Image Distillation. To extract the inherent motion cues at the tem-
poral axis, we propose embedding distillation to transfer the video semantics to
the image counterpart, enabling motion perception in the image branch. To this
end, given the video embedding V and the image embedding X, we first deploy
an MLP projection layer on the image embedding to scale up the dimension
for more representative space. As we adopt the same operations for labeled and
unlabeled samples, we do not write the superscripts (l/u) of the embedding
for mathematical clarity. Then, we distill the motion-aware cues from the video
embedding to associated image frames with L1 loss, which is denoted as follows,

Ldis =
1

B ×K ×D

B∑
b=1

K∑
k=1

D∑
d=1

|
MLP(X)[b,k,d]

|MLP(X)|
−

V[b,d]

|V|
|1, (3)

where MLP(X) = W(2)(ReLU(W(1)X + b(1)) + b(2) with learnable weight W
and bias b. This cross-modality distillation can transfer the temporary semantics
to the image model, thereby ensuring the motion robustness.
Image-to-Image Consistency. To harness the abundant inter-frame depen-
dencies for reliable model recognition, we further enhance cross-image consis-
tency within the imaging modality. Thus, we enable the model to leverage the
rich temporal knowledge within video sequences. Specifically, given the image
embedding of strong/weak augmented unlabeled data Xu

s/w ∈ RBu×Ku×D′
,

we reuse the former MLP projection layers to generate embedding and then
calculate the pair-wise cosine similarity to generate affinity matrix Mu

s/w =
Xu

s/w·(Xu
s/w)T

∥Xu
s/w

∥2·∥Xu
s/w

∥2
, Mu

s/w ∈ RBu×Ku×Ku . Then, we encourage the consistency be-

tween the affinity matrix obtained from the strong and weak augmented samples,
which can be expressed as the following loss function,

Lcon =
1

Bu ×Ku ×Ku

Bu∑
i=1

Ku∑
j=1

|Mu
s [b,k] −Mu

w [b,k]|2. (4)

Different from existing works [29,21,36] that typically process images indepen-
dently, in the proposed method, the relation within each video frame pair can
be thoroughly enhanced via the consistency loss [10], boosting the image model
with long-distance dependence [19,17,18] among different video frames.
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Table 1. Comparison with SOTA methods on Kvasir-Capsule and ISIC 2018 datasets.

Kvasir-Capsule: Endoscopic Scene

Method
5% 10% 20% 40%

MAP MAR AUC MAP MAR AUC MAP MAR AUC MAP MAR AUC

FixMatch [31] 66.77 56.84 76.83 69.36 58.59 78.04 80.75 68.88 83.39 85.87 76.51 87.54
CoMatch [13] 68.11 63.22 80.44 73.80 65.19 81.71 82.74 71.30 84.74 86.07 79.88 89.15
SimMatch [13] 67.25 65.69 81.77 70.43 71.37 84.56 82.24 70.44 84.58 86.81 81.25 89.95
TEAR [29] 67.46 65.71 81.65 69.83 72.36 82.23 82.35 73.28 85.99 87.78 80.94 90.02
ACPL [21] 70.17 67.21 81.97 74.73 66.46 82.33 83.42 74.45 86.52 87.41 82.76 90.85
SimMatchV2 [13] 70.96 65.99 81.78 74.91 75.29 84.20 84.34 75.08 86.79 87.91 85.31 92.11
VidMotion 73.55 69.96 83.75 78.28 77.57 87.91 86.05 79.89 89.34 91.21 86.41 92.70

ISIC 2018 Skin Lesion: Dermoscopic Scene

FixMatch [31] 37.61 25.49 57.47 38.04 30.27 60.60 43.78 37.80 64.73 49.32 41.06 66.75
CoMatch [13] 39.04 25.95 57.84 39.77 29.45 60.22 45.51 37.84 65.15 50.29 41.29 67.27
SimMatch [13] 39.25 26.09 58.71 41.05 30.00 60.65 44.87 39.49 65.81 51.77 42.64 67.21
TEAR [29] 40.90 25.61 57.95 42.00 30.60 61.34 45.20 39.71 65.73 50.55 41.73 67.24
ACPL [21] 41.67 25.07 57.44 43.42 32.24 62.14 45.29 38.06 65.19 51.76 42.49 68.11
SimMatchV2 [13] 41.50 27.61 58.90 43.82 33.05 62.42 46.38 38.14 65.31 51.72 43.92 68.43
VidMotion 44.25 28.16 59.76 45.46 34.55 63.24 47.14 42.25 67.37 54.19 46.39 69.71

2.3 Training and Inference

In the training stage of VidMotion, we implement the following loss function:

L = λ1Ldis + λ2Lcon + Lvid
cls + Lbase, (5)

where Ldis is the video-to-image distillation loss, Lcon is the image-to-image
consistency, Lvid

cls is the standard classification loss for sampled video frames,
and Lbase can be deployed as any SSL baseline. Note that generated videos can
maintain semantic consistency with reference images to a certain degree since
the disease area may move out of the frame in some cases. Nonetheless, we assign
an image-consistent label to the generated video frames. In the inference stage,
we only implement the image encoder and classifier for the diagnosis.

3 Experiments

3.1 Experimental Setup

Datasets. We evaluate our methods on two public benchmarks with extensive
settings. (1) Kvasir-Capsule. KC is a real-world endoscopic dataset containing
47,238 images with 14 challenging clinic classes. We follow existing works [29] to
randomly collect the subset for the model training and test for fair comparison.
(2) ISIC 2018. ISIC 2018 is a real-world skin lesion dataset [4], which consists of
10,015 dermoscopy images. ISIC contains seven kinds of different skin lesions2,
which is a more challenging dataset with the intrinsic class-imbalanced issue.
Different from existing work [29] relying on the class-balanced data splitting, we

2 For dermatology images, generated videos simulate rational camera movements, e.g.,
translation and zoom, which are crucial for performance gains.
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Table 2. Ablation study results on Kvasir-Capsule and ISIC 2018 datasets.

Setting Kvasir-Capsule ISIC 2018 Skin Lesion

MUE
MCL 5% 40% 5% 40%

V2I I2I MAP MAR AUC MAP MAR AUC MAP MAR AUC MAP MAR AUC

✕ ✕ ✕ 68.11 63.22 80.44 86.07 79.88 89.15 39.04 25.95 57.84 50.29 41.29 67.27

✓ ✕ ✕ 71.87 65.72 81.48 88.77 82.33 90.54 43.22 26.62 58.71 53.10 44.10 68.63
✓ ✓ ✕ 72.51 68.40 83.06 91.03 84.35 91.02 44.02 27.23 59.01 53.14 45.23 69.02
✓ ✓ ✓ 73.55 69.96 83.75 91.21 86.41 92.70 44.25 28.16 59.76 54.19 46.39 69.71

Table 3. Sensitivity on loss weight λ.

λ1 λ2 MAP MAR AUC

0.1 1.0 73.55 69.96 83.75
0.2 1.0 74.01 69.31 82.97
0.1 2.0 73.12 69.42 82.23
0.05 1.0 72.96 68.88 82.12
0.1 0.5 73.24 69.02 83.01

Table 4. Sensitivity on motion γ.

γ MAP MAR AUC

55 72.11 68.33 82.07
105 72.48 69.02 83.03
155 73.03 69.11 83.38
205 73.21 69.33 83.42
255 73.55 69.96 83.75

conduct four different SSL settings with 5%, 10%, 20%, and 40% label regimes
according to the real class distribution for more clinical rationality.
Evluation Metrics. To thoroughly evaluate SSL in real-world situations, we
use three evaluation metrics for strict comparison, including Macro-Average Pre-
cision (MAP), Macro-Average Recall (MAR), and multi-class Area Under Curve
(AUC), where MAP and MAR can better evaluate imbalanced medical scenarios,
and AUC can better analyze the general performance in the balanced situation.
Implementation Details. We follow [31,13] to implement all methods on
WideResNet-22 image encoder and deploy the pretrained CLIP-ViP [35] video
encoder. For video generation, we use SVD-XT [2] to generate N = 25 video
frames3 for each medical image with T = 25 using one NVIDIA A100 GPU. The
motion intensity γ is set to 255 to maximize the motion diversity. Considering
the computation cost [2], we use 5% images to generate videos as hold-out ex-
periments, which can be further improved with larger ratios. We train learnable
models with 100 epochs with SGD optimizer, the learning rate of 1 × 10−2, a
momentum of 0.9, and a weight decay of 5× 10−4. Experiments are performed
on NVIDIA 2080 Ti GPUs with Nl = 12 and Nu = 84. The strong/weak aug-
mentations are consistent with baseline [13] for fair comparison. The loss weights
λ1 and λ2 in Eq. 5 are empirically set as 0.1 and 1.0, respectively.

3.2 Quantitative Study

Comparison with State-of-the-Arts. As shown in Tab. 1, we compare the
proposed VidMotion with state-of-the-art SSL methods with different label regimes.
Compared with the most advanced SSL method SimMatchV2 [38], our method
achieves consistent and noticeable gains on all evaluation matrices, which per-
forms 2.59%, 3.37%, 1.71%, and 3.3% MAP gains, and gives 1.97%, 3.71%,

3 The 25 frames consists of 1 given image and 4 seconds of 6-FPS video.
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Fig. 3. Illustrating the generative video frames. Generated videos can successfully sim-
ulate diverse clinical motions, e.g., spatial translation, liquid flow, and shake bur.

2.06%, and 0.69% AUC improvements. This indicates that our method is highly
effective and robust to the data distribution with great generalization capacity.
In comparison with the advanced SSL method in the field of medical imaging,
the proposed surpasses TEAR [29] and ACPL [21] with 2.10% and 1.97% AUC
(5%), respectively, showing our strong capacity under data-efficient learning.

Ablation Analysis. We report detailed ablation analysis in Tab. 2 on each
designed component, evaluated on two benchmarks under two different label
regimes. Compared with the baseline model with 68.11%, 86.07% 39.04%, and
50.29% MAP, introducing video-enhanced data for training (MUE) gives signif-
icant performance gains with 71.87%, 88.77%, 43.22%. and 53.10% MAP, ver-
ifying the critical motion-based semantics. Then, after introducing MCL with
V2I and I2I, we can observe noticeable performance improvements with 73.55%,
91.21%, 44.25%, and 54.19% MAP, which surpasses the baseline model with
significant 5.44%, 5.41%, 5.21%, and 3.90% MAP improvements, revealing the
superior effectiveness of the proposed collaborative learning paradigm.

Sensitivity Analysis. To further analyze our VidMotion, we conduct a detailed
sensitivity analysis on the core hyper-parameters. In Tab. 3, if we decrease the
loss weight with λ1 = 0.05 and λ2 = 0.5, there is a small performance decrease
(-1.05% and -0.77% MAP) compared with our optimal setting, indicating the
effectiveness of our design. In Tab. 4, our method is robust to the motion intensity
and gives slight gains when we enlarge the γ due to more diverse motion types.

3.3 Qualitative Study

As shown in Fig. 3, we present the video frames generated by the images in three
different classes. The left-most image in each row represents the reference image
for the image-to-video generation. We are impressed that the generated videos
not only adhere to the laws of physical motion but also successfully simulate
diverse movements in clinical environments, including spatial translations, fluid
dynamics, and shaking bur, which is robust to diverse classes.
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3.4 Conclusion

This paper proposes a holistic framework named VidMotion to boost medical
image analysis with generative medical videos, which breaks through the static
diagnosis in existing works by learning with dynamic videos. VidMotion consists
of a Motion-guided Unbiased Enhancement module to augment medical images
into motion-informed videos at the data level. Besides, it designs a Motion-aware
Collaborative Learning module to encourage the joint learning of image and
video modalities. Extensive experiments verify that our method is both highly
effective and efficient, which surpasses SOTA methods by a large margin.
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