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Abstract. Deep learning models have been successfully developed for
various medical image segmentation tasks. However, individual models
are commonly developed using specific data along with a substantial
amount of annotations, ignoring the internal connections between differ-
ent tasks. To overcome this limitation, we integrate such a multi-task
processing into a general computerized tomography (CT) image segmen-
tation model trained on large-scale data, capable of performing a wide
range of segmentation tasks. The rationale is that different segmentation
tasks are often correlated, and their joint learning could potentially im-
prove overall segmentation performance. Specifically, the proposed model
is designed with a transformer-based encoder-decoder architecture cou-
pled with automatic pathway (AP) modules. It provides a common image
encoding and an automatic task-driven decoding pathway for perform-
ing different segmentation tasks via specific prompts. As a unified model
capable of handling multiple tasks, our model not only improves the
performance of seen tasks but also quickly adapts to new unseen tasks
with a relatively small number of training samples while maintaining
reasonable performance. Furthermore, the modular design of automatic
pathway routing allows for parameter pruning for network size reduction
during the deployment.

Keywords: Foundation model · CT image segmentation · Large vision
model.

1 Introduction

Medical artificial intelligence (AI) applications can help physicians expedite and
make more precise assessments and choose better treatment options [21,24]. In
radiation therapy, accurate segmentation of tumors and organs at risk in medical
images is essential for dose planning and delivery [22]. Thus, image segmentation
is considered fundamental for medical AI development.



2 X. Ouyang et al.

Considering the diversity of medical images and variability of organ sizes and
shapes, the majority of image segmentation jobs [6,25,18] are usually carried out
in a data- and task-specific manner to achieve plausible performance. Specific
neural network models are tailored to particular segmentation tasks, and these
models are usually unable to capture the relationship between different tasks,
and their performance may drop significantly when the input image data and/or
the target segmentation deviate from those employed during training. It is also
difficult to transfer the task-specific models to new unseen tasks. In the litera-
ture, some studies adopt the multi-task learning (MTL) strategy [5,26], which
involves appending multiple heads to the end of a shared neural network model
to generate predictions for different tasks. However, multi-head frameworks usu-
ally require a large number of parameters in both the encoder and decoder to
achieve high performance across tasks, which poses challenges when deploying
them in clinical applications. This is because almost all the parameters (exclud-
ing those in the final heads) are necessary even for a single segmentation task.
Recently, the segment anything model (SAM) [11] has drawn considerable at-
tention as a powerful pre-trained network. However, there exists a significant
distribution shift from natural images to medical images, which renders direct
application in most medical contexts challenging due to the huge gap between
3D or 4D medical images and 2D natural images. Moreover, the use of SAM
typically necessitates guidance through appropriate location clues (foreground
points, boxes, or masks) to acquire desired segmentation results, also, the qual-
ity of the results varies with the different cues provided, hindering SAM from
achieving a fully automated process in CAD systems.

In this paper, we integrate multi-task segmentation using a prompt-based
CT image segmentation model, which is trained on a large number of multi-
task datasets as a foundation model for CT image segmentation. Unlike com-
mon task-specific AI models, our model is pre-trained on large-scale multi-task
datasets and capable of feature extraction with a transformer-based encoder
across various tasks. Compared to multi-head-based MTL, our model utilizes
comprehensive automatic pathway (AP) routing to automatically determine the
feature decoding routes for different tasks. This allows our model to capture cor-
relations between different tasks while enhancing the segmentation performance
of each. This idea is similar to the network architecture search (NAS) method
[3] to automate the discovery of optimal network structures. With AP routing,
we can mitigate conflicts and maintain mutual benefits across various tasks.

We built up the most extensive dataset so far for training the model, which
contains 32,170 cases of CT scans with 58,499 annotations for 83 tasks. To the
best of our knowledge, this is the largest dataset consisting of both non-contrast
CT and contrast-enhanced CT so far for medical image segmentation training.
This large-scale data training approach facilitates the model to learn transferable
and generalizable representations in medical images, enabling it to migrate to
other new medical image tasks. Experimental results on 15 tasks demonstrate
that our method outperforms the state-of-the-art methods on various tasks.
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Fig. 1. The overall structure of our model. The decoder encompasses multiple layers
with automatic pathway (AP) modules using task-specific prompts as input.

2 Method

As illustrated in Fig. 1, the proposed model consists of three components: 1) A
transformer-based encoder that extracts features from various medical images
and forms a common interactive latent space; 2) a prompt text encoder that pro-
vides prompt embedding to guide the sub-pathway selection in the AP modules;
and 3) a decoder that processes data through different sub-pathways to generate
the corresponding segmentation results based on automatic routing using the
AP modules. We outline the respective details below.

2.1 Overall Structure

Given the remarkable performance of the Swin transformer [13], we extend its
structure into 3D as [7] and adopt the encoder in our model, which consists
of four stages, and each stage contains two transformer blocks using regular-
window-partitioning multi-head self-attention modules. The input of the Swin-
transformer encoder is a patch embedding layer with a patch size of 2 × 2 × 2
and 48 output channels. Five-level downsampling operations with 1/2 scale are
used in the encoder, which has a size of 8.06 million parameters in total to learn
the image information from the large-scale dataset.

The decoder is designed based on 3D residual blocks at different levels, and
skip connections are used similarly to the SwinUnetr [7]. For the sake of flex-
ibility and adaptability in multi-task segmentation, we integrate a sequence of
automatic pathway (AP) modules within the decoding pipeline. These AP mod-
ules enable automatic and independent routing of different sub-pathways at each
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decoding level, thus convolutional blocks within each sub-pathway are automati-
cally activated and executed depending on the purpose/prompt fed to our model.

Specifically, we use the text prompt as guidance to direct the model about
which object to be segmented, e.g., “liver" indicates liver segmentation in CT
images. To encode the prompt information into our model, we use the text
encoder from the CLIP model [19] to transfer the input prompt into a latent
vector representation, called prompt embedding. The reason to use the existing
pre-trained model is that it provides promising projections and gives reasonable
initialization for different tasks. In our experiments, the parameters of this text
encoder are fixed during the training to maintain the ability to understand texts
from the large-scale pre-training of CLIP. Details of AP module are described in
the next section.

2.2 Automatic Pathway Routing

The objective of the AP module is to enhance the model’s ability to capture cor-
relations and reduce conflicts between various tasks. By training on the large-
scale, multi-task dataset, this module aims to improve the segmentation per-
formance of each task while ensuring mutual benefits across tasks. The core
mechanism of AP modules is to select suitable sub-pathways at different levels
given a prompt embedding vector. Specifically, an AP module consists of two es-
sential components: a routing layer and M candidate sub-pathways. The routing
layer is formed by fully connected layers and a Gumbel softmax layer to learn
a transformation between prompt embedding and sub-pathway routing. Each
sub-pathway is a convolutional network module in the decoding process. More
precisely, the text/prompt embedding features of a given task, derived from the
pre-trained text encoder, are utilized for the automatic sub-pathway selection
using routing layers and Gumbel softmax. The M candidate sub-pathways have
the same network structure (3D residual blocks) but different parameters after
training. This way, different routes of image feature processing are automatically
used for different tasks at various levels.

The proposed AP module enables automatic and independent routing of dif-
ferent sub-pathways at each decoding level. With M candidate sub-pathways at
each decoding level, the AP-enabled decoder can be configured by a combination
of sub-pathway selections at different levels, making it suitable for handling a
large number of tasks.

3 Experiments

3.1 Datasets

We collected the largest dataset for medical image segmentation tasks to date
for the network training, which contains 32,170 CT scans with 58,499 annota-
tions corresponding to 83 segmentation tasks throughout the entire body. Among
the datasets, a total of 45,725 annotations of in-house CT scans were collected



Prompt-based Segmentation Model 5

co
ro

nary

lung nodule

mediasti
num

head and neck
arte

ry

kid
ney

liv
er

lym
ph node

sp
leen

pancre
as
aorta

sto
mach

eso
phagus

pulm
onary

arte
ry rib

s

duodenum

gallb
ladd

er

adre
nal g

lands

pitu
ita

ry
gland

optic
nerve

lower lim
bs arte

ry eye
co

lon

inferio
r ve

na ca
va

bra
inste

m

bladder

liv
er tumor

temporo
mandibular joints

sm
all i

ntesti
ne

kid
ney tumor

paro
tid

gland

mandible
body

pharyn
geal c

onstr
ict

or musc
le

pulm
onary

ve
in

ve
rte

bra
l c

olumn
lung

thyro
id

tempora
l lo

be

ca
rd

iac
bra

in
bone

0

2000

4000

6000

Training set

liv
er ve

ss
el

testi
cle
femur

hip
bone

sa
cru

m

tailb
one

pancre
atic

tumor

humeru
s

ste
rn

um

sh
oulder blade

cla
vic

le

kid
ney cy

sts

bre
ast

sp
inal c

ord
lens

mouth

su
bmandibular glands

co
ch

lea

optic
ch

iasm

femora
l h

ead

re
ctu

m

pulm
onary

ve
ss

el

co
lore

cta
l c

ance
r

airw
ay

tra
ch

ea

masto
id
laryn

x

intern
al a

udito
ry

meatus

middle
ear

tym
panic

ca
vit

y

ve
sti

bular sy
ste

m

hippoca
mpus

lung tumor
ear

ca
ro

tid
arte

ry
glottis lip

s

cri
co

pharyn
geus musc

le

aryt
enoid

ca
rtil

age

bucc
al m

uco
sa

lacri
mal g

land

porta
l a

nd sp
lenic

ve
in

0

100

200

300

Dataset Size

Fig. 2. Overview of the datasets. The datasets cover a wide range of medical image
segmentation tasks that span across the entire body. Overall, the training set encom-
passes 58,499 annotations.

from our collaborating hospitals, and IRB approvals were obtained by the Re-
search Ethics Committees from those centers. Written informed consent was
waived because of the retrospective nature of the study. In addition, the rest
12,774 annotations in the experiments came from multiple publicly available
datasets, i.e., from the Head and Neck organ-at-risk CT & MR Segmentation
dataset (HaN-Seg) [17], The Cancer Imaging Archive (TCIA) [4], the Medical
Segmentation Decathlon (MSD) [1], the Segmentation of Organs-at-Risk and
Gross Tumor Volume of NPC for Radiotherapy Planning Challenge (SegRap,
https://segrap2023.grand-challenge.org/), the Multi-Atlas Labeling Beyond the
Cranial Vault (BTCV) [12], the Liver Tumor Segmentation (LiTS) Challenge
[2], the Kidney Tumor Segmentation (KiTS) Challenge [8], the Whole abdom-
inal ORgan Dataset (WORD) [15], the CT-ORG dataset [20], and the Multi-
Modality Abdominal Multi-Organ Segmentation (AMOS) Challenge [10]. More
details about the datasets can be found in their corresponding references.

3.2 Experimental Settings

The networks are implemented using the PyTorch framework [16], with memory
usage and computation speed optimized using the automatic mixed precision
(AMP) package. The training process employs the AdamW optimizer [14] with a
momentum of 0.9, weight decay of 0.00001, and an initial learning rate of 0.0002.
For data augmentation, common strategies for deep-learning model training are
employed, including rotation, scaling, flipping, shifting, and adding noise. For

https://segrap2023.grand-challenge.org/
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Table 1. Quantitative comparison of Dice scores (%) for segmentation of 7 non-tubular-
structure organs, and 1 tumor. The sole-path model represents our model without the
automatic pathway module trained in each task. We also show the number of training
and testing cases (“training/testing") after the task name. ∗ indicates a significant
difference compared to our proposed method (p-value < 0.05). Standard deviation
(std) results are shown in Table A.1 of supplementary.

Method Stomach
1,626/183

Lung
345/20

Ear
45/5

Bladder
501/57

Sacrum
266/35

Cardiac
330/20

Thyroid
334/38

Lung
tumor
57/6

nnU-Net 90.91 98.80∗ 86.05 90.79 92.57 87.86∗ 89.23 77.12
Cascaded
Vb-Net 91.59 98.14 80.99 86.13∗ 90.54 91.26 83.00∗ 59.11

Sole-path
model 90.45∗ 98.40 83.93 83.13∗ 91.16 89.62 85.15∗ 76.40

Ours 92.59 98.61 86.29 91.68 94.86 93.01 88.90 80.75

the adjustment strategy of the learning rate, the model is trained with cosine
annealing with the WarmRestarts strategy, and the number of warmup epochs
is set to 50 in the experiments.

Totally 20 NVIDIA A40 graphics processing units are used for training. First,
the model is trained for 3,000 epochs with all the training data of 83 tasks. Three
candidate spacing settings, i.e., 0.6 × 0.6 × 0.6mm3, 1.0 × 1.0 × 1.0mm3 and
1.5× 1.5× 1.5mm3, are used. During training, it has a 10% chance to randomly
choose among three candidate spacing settings, and 90% chance to choose the
configuration closest to the original image spacing. Subsequently, we normalize
the processed intensity values in the CT images to the range [0, 1] following
“window width/level” (window: 1800, level: 0) operation. In our experiments, we
set M as 6 in all the AP modules. Second, for each selected sub-pathway in AP
modules, we only select the data of the tasks belonging to this sub-pathway to
further update the parameters for another 1,000 epochs of the corresponding
sub-pathway with other parameters in the model are fixed.

3.3 Evaluation Metrics

The performance is mainly evaluated by two commonly used metrics Dice and
clDice. Dice provides a globally averaged assessment of segmentation perfor-
mance across all voxels, and clDice evaluates the topological degree of match-
ing for tubular-structure tasks. Also, we show the values of Topology Precision
(Tprec) and Topology Sensitivity (Tsens) [23], detailing the sensitivity and preci-
sion for segmentation results. The two-tailed t-test is used to compare the results
with those obtained by gCIS.

3.4 Experimental Results

Performance on segmentation of non-tubular structures. To better demon-
strate the effectiveness of our model, we compare the proposed foundation model
with the state-of-the-art (SOTA) models, i.e., nnU-Net [9] and cascaded Vb-Net
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Table 2. Quantitative comparison of Dice scores (%) and clDice scores (%) for seg-
mentation of 7 tubular-structure organs, including the number of training and testing
cases. ∗ indicates a significant difference compared to our proposed method (p-value <
0.05). Std results are shown in Table A.2 of supplementary.

Metric Method Airway
108/20

Coronary
6,065/155

Pulmo-
nary

artery
1,153/20

Pulmo-
nary
vein

352/20

Aorta
1,694/20

Lower
limb

artery
634/73

Head &
neck

artery
3,664/729

Dice
(%)

nnU-Net 87.27 75.85∗ 88.17 87.02 95.49 76.74∗ 87.80∗

Cascaded
Vb-Net 85.70∗ 83.02 87.50 85.70 89.54∗ 79.73 93.19∗

Sole-path
model 86.79 79.55∗ 87.71 84.07 90.90∗ 78.86 93.50∗

Ours 87.60 82.72 88.83 87.16 95.31 80.13 94.45

clDice
(%)

nnU-Net 82.96 84.43∗ 87.32 90.29 99.83 79.23 81.64∗

Cascaded
Vb-Net 78.49∗ 88.10∗ 85.88∗ 87.59∗ 96.46∗ 75.80∗ 91.29∗

Sole-path
model 83.10 86.68∗ 85.86∗ 88.38∗ 94.92∗ 78.37∗ 91.70∗

Ours 84.47 90.72 88.58 92.08 99.88 82.38 93.28

[22], each independently trained for individual tasks. For ablation study, we con-
duct comparative experiments by training sole-path models (without AP mod-
ules) separately for each task. In Table 1, we show the Dice scores for segmenting
7 non-tubular-structure organs, and 1 tumor. Standard deviation (std) results
are shown in Table A.1 of supplementary. It can be observed that our method
can yield the highest Dice scores for 6 tasks, which proves its superior perfor-
mance. Moreover, most std of Dice of our model are lower than other methods,
which proves that our model is more robust. For thyroid segmentation, our model
performs slightly less favorably than nnU-Net, which could be attributed to the
nature of the testing set, which comprises exclusively thick CT images (3mm),
rendering the precise delineation of thyroid boundaries challenging. Meanwhile,
our model has a smaller std, indicating that our model has a consistent and
stable performance for all cases in testing set.

For the segmentation of “lung tumor", our model can achieve the Dice score of
80.75% while nnU-Net model can only reach 77.12%. It is a challenging segmen-
tation task due to two key factors: 1) the limited training dataset consisting of
only 57 cases, and 2) the considerable diversity of tumor size and location. In this
task, our model could improve the Dice score by approximately 5% compared
with the nnU-Net baseline. Overall, our model is more robust for challenging
tasks and is more friendly to data-limited tasks.

Performance on segmentation of tubular structures. Meanwhile, we com-
pare Dice and clDice scores with state-of-the-art methods for the segmentation
tasks of 7 tubular structures in Table 2. The tasks include segmentation of the
coronary, pulmonary artery and vein, aorta, lower limb artery, head and neck
artery, as well as airway segmentation. Concurrently, it is worth noting that the
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Dice score tends to favor the volumetric segmentation of larger tubular compo-
nents, while clDice could better reveal the connectedness of tubular structure.
It can be observed that our model consistently outperforms other state-of-the-
art methods in terms of clDice scores in all tasks, showing that it is a power
model for these challenging tubular targets. For the segmentation of the lower
limb artery, our method outperforms the SOTA results by nearly 3% in clDice
scores although the coverage range of lower limb arteries is large and the shape
is complex.

Performance of few-shot learning on a new task. It is important to rapidly
develop AI models for new tasks in limited annotated data in real clinical sce-
narios. In this section, we show the great generalization ability of our foundation
segmentation model for the segmentation of the renal artery. We collected a total
of 33 cases for this new task, and it is worth noticing that neither these images
nor these annotations have been used in the multi-task co-training procedure of
our model. 28 out of these cases are randomly selected into the testing set. As
shown in Table 3, we use two settings to train all the methods, i.e., 1-shot and
5-shot. The n represents the number of training cases in the n-shot setting.

The method for rapidly adapting our model to new tasks consists of three
steps. The first step is to use text prompts to select suitable sub-pathways in AP
modules. We use “renal artery" to choose the sub-pathways for this new task.
Then, we keep the selected sub-pathways and trim the remaining sub-pathways
from the network to reduce the size of our network. Since there are originally 6
candidate sub-pathways in each AP module, the network trimming operation can
reduce the parameters of AP modules to 1/6. In contrast, the original foundation
model for all tasks has 60.50 million parameters, while the trimmed model for
this new task has only 26.75 million parameters. It could be a great advantage to
deploy the proposed model for downstream tasks in real clinical centers. Finally,
during the training procedure, the parameters in the encoder of our model are
fixed, while only the parameters of the decoder with these specific sub-pathways
are updated. The fixed encoder offers a powerful encoding ability for CT images
due to the pre-training from the large-scale dataset. At the same time, the se-
lection of the sub-pathways by the task prompt can provide a valuable starting
point for the decoder training.

We show the comparison results with nnU-Net and cascaded Vb-Net for the
segmentation of renal artery using different training examples in Table 3. It can
be observed that our foundation model can achieve significantly better clDice
scores in the 1-shot and 5-shot settings. We can see the gaps of the proposed
method with the best clDice scores from other SOTA methods are larger when
the smaller number of samples in training. It proves that the fixed encoder offers
a powerful encoding ability for CT images due to the pre-training from the large-
scale dataset. At the same time, the selection of the sub-pathways by the task
prompt can provide a valuable starting point for the decoder training.
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Table 3. Comparison with other methods for the few-shot segmentation of renal artery.
∗ indicates a significant difference compared to our proposed method (p-value < 0.05).
Std results are shown in Table A.3 of supplementary.

Training Setting Method Dice (%) clDice (%) Tsens (%) Tprec (%)

1-shot

nnU-Net 82.56 56.17∗ 41.88∗ 97.45∗

Cascaded Vb-Net 71.53∗ 45.59∗ 27.99∗ 87.12
Ours 84.84 67.04 55.07 87.30

5-shot

nnU-Net 89.81 77.40 65.45∗ 98.47∗

Cascaded Vb-Net 85.79∗ 61.57∗ 47.13∗ 96.11
Ours 88.64 80.77 71.43 94.30

4 Conclusion

By incorporating dozens of tasks and tens of thousands of CT volumes, we
present a general image segmentation model by using an AP module-based de-
coder. To address the inherent constraints associated with a shared decoder for
multi-head networks in traditional multi-task learning, our method enhances
task flexibility through the routing of multiple sub-pathways at each decoder
level, using AP modules. These sub-pathways are dynamically and autonomously
selected and learned to alleviate conflicts and maximize benefits across a spec-
trum of tasks. Our method could achieve the best performance in 15 tubular or
non-tubular structure segmentation tasks. Moreover, our foundation model can
achieve excellent performance with quite limited training samples.
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