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Abstract. Deep learning based methods often suffer from performance
degradation caused by domain shift. In recent years, many sophisti-
cated network structures have been designed to tackle this problem.
However, the advent of large model trained on massive data, with its
exceptional segmentation capability, introduces a new perspective for
solving medical segmentation problems. In this paper, we propose a
novel Domain-Adaptive Prompt framework for fine-tuning the Segment
Anything Model (termed as DAPSAM) to address single-source do-
main generalization (SDG) in segmenting medical images. DAPSAM
not only utilizes a more generalization-friendly adapter to fine-tune the
large model, but also introduces a self-learning prototype-based prompt
generator to enhance model’s generalization ability. Specifically, we first
merge the important low-level features into intermediate features before
feeding to each adapter, followed by an attention filter to remove redun-
dant information. This yields more robust image embeddings. Then, we
propose using a learnable memory bank to construct domain-adaptive
prototypes for prompt generation, helping to achieve generalizable medi-
cal image segmentation. Extensive experimental results demonstrate that
our DAPSAM achieves state-of-the-art performance on two SDG medical
image segmentation tasks with different modalities. The code is available
at https://github.com/wkklavis/DAPSAM.

Keywords: Single domain generalization · Medical image segmentation
· Segment Anything Model · Prompt learning.

1 Introduction

The advancement of deep neural networks has led to significant progress in
the field of medical image segmentation. Most methods have shown notable
performance when the training and testing data share the same distribution.
However, distribution shift (also known as domain shift [2]) leads to a decline

https://github.com/wkklavis/DAPSAM
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in performance, hindering the practical application of deep learning methods in
real-world scenarios. In medical image segmentation tasks, this shift occurs more
frequently due to discrepancies in imaging distribution caused by non-uniform
characteristics of imaging equipment, varying operator skills, and factors such
as patient radiation exposure and imaging time. Unlike unsupervised domain
adaptation [27] and multi-source domain generalization [6,11], single domain
generalization (SDG) is a more practical but challenging setting, under which
only the labeled data from one source domain is used to train the model.

Traditional CNNs mainly focus on style augmentation at the image [25,28,31]
or feature level [3,19,14] against domain shifts. CCSDG [14] incorporates con-
trastive feature disentanglement into a segmentation backbone. Recently, Vision
Transformers have been shown to be significantly more robust in the out-of-
distribution generalization [12,17]. In particular, the Segment Anything Model
(SAM) [18], trained on more than 1 billion masks, has achieved unprecedented
generalization capabilities on a variety of natural images. Some works have shown
favorable results when applying SAM to medical image segmentation [33,9,23,24].
DeSAM [9] modifies SAM’s decoder to decouple mask generation and prompt
embeddings while leveraging pretrained weights, but without fully utilizing the
capability and adaptability of the encoder. These developments showcase the po-
tential of a robust huge segmentation model by leveraging a pre-trained SAM,
eliminating the necessity for crafting a complex data augmentation method.

The accuracy of SAM heavily relies on the design of prompt information, such
as dots and boxes. However, these suitable prompts often require interaction with
humans. This type of prompt generation relies on subjective human judgments,
often requiring several attempts to find the right prompt.

We introduce a novel prototype-based prompt generation module capable
of automatically generating prompts specifically suited for the current image
segmentation, which are weakly domain-specific. We aim to generate domain-
adaptive prompts by leveraging features learned from the source domain. When
confronted with unseen images, we utilize stored feature knowledge to generate
instance-level strongly correlated and domain-adaptive prompts that guide the
mask decoder in the segmentation process. We implement memory and storage
functionality using a parameterized memory bank, taking inspiration from [10].
Similar to few-shot learning, we aspire to have the module serve as guiding
support features when encountering target query features.

To further ensure that the feature information stored in the memory bank
is more robust, we redesign a fine-tuning structure to fully harness the model’s
generalization capability. We use the vanilla adapter structure [5,30] to fine-tune
the encoder as the basic model. Low-level features contain more contour infor-
mation [22,35], which are crucial for medical image segmentation [26]. Motivated
by this, we propose a new generalized adapter structure, in which low-level in-
formation is first mixed with intermediate features. Then, we further introduce a
selective attention mechanism [29,20] to suppress information that is detrimen-
tal to generalization. After fine-tuning each layer with the generalized adapters
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in the encoder, we obtain more robust features, further assisting the prompt
generation module.

We evaluate the proposed method termed DAPSAM on two widely used
generalizable medical image segmentation benchmarks. Experiments on differ-
ent types of datasets show that DAPSAM significantly/consistently outperforms
previous CNN-based and some other SAM-based methods for single out-of-
distribution generalization in medical image segmentation.

Our main contributions are summarized: 1)We propose a novel domain-
adaptive prompt generator using prototype-based memory bank learned from
source domain images. This generates domain-weakly-correlated but instance-
strongly-correlated prompt, making use of the rich prior knowledge from pre-
trained large model for generalization. 2)We propose to redesign the adapters
in each transformer block by integrating low-level features into intermediate fea-
tures, followed by a channel attention filter to improve the robustness of image
embeddings. 3) Extensive experiments show that our DAPSAM outperforms
previous state-of-the-art methods on two different types of SDG medical image
segmentation tasks.

2 Method

The single source domain problem is defined as training on a single source domain
Ds = {xs

i , y
s
i }

Ns
i=1, where xs

i and ysi denote the source image and correspond-
ing label, and then testing model performance on unseen test domains Dt =
{Dt

1, D
t
2, . . . , D

t
n}. We use SAM’s encoder and decoder as the baseline model.

Specifically, we freeze the encoder and adopt two trainable MLP-structured
adapters for each layer of the encoder following [5,30] for its efficiency and scal-
ability. The decoder is set to fully trainable. Following SAMed [33], we change
the original prediction of SAM to semantic segmentation output.

2.1 Generalized Adapter

For an image I of dimension H ×W , we first get the initial image embedding
e0 through the frozen Patch Embedding layer of ViT. Then we obtain low-level
feature Flow from e0 through a simple trainable linear layer.

In medical images, low-level information such as contours is crucial for the
final image segmentation, especially in segmenting organ structures and areas of
pathology. We provide low-level feature Flow to each intermediate feature F in
every adapter. We add Flow and F to obtain a mixed feature Ffuse.

Then, we use a selective attention mechanism along the channel dimension
to filter out information not conducive to generalization [20], obtaining more ro-
bust features. Channel filtering first involves separately applying global average
pooling and global max pooling to the fused feature along the spatial dimen-
sions. The results are then added together, and a sigmoid function is followed
to generate a mask which is applied to the fused features. The filtering process
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Fig. 1. The pipeline of the proposed DAPSAM. We design a generalization framework
to fine-tune SAM, with generalized adapters (top right) to obtain robust features and
a prompt generation module (bottom) to generate instance-related source domain pro-
totypes for target image segmentation.

can be formulated as:

Ffiltered = Ffuse ⊗ σ(GAP(Ffuse) + GMP(Ffuse)), (1)

where σ denotes the sigmoid function and ⊗ denotes element-wise multiplication.
GAP(·) and GMP(·) respectively denote the global average and max pooling
operations along the spatial dimension.

Spatial dimension filtering can disrupt the spatial structure of features, which
is often crucial for segmentation. Therefore, different from [29,20], we only em-
ploy channel-dimension filtering in our adapters.

Filtered features are then passed through the vanilla adapter structure, which
efficiently and effectively performs adaptation across all layers:

F
′
= F +MLPup(GELU(MLPdown(Ffiltered))), (2)

where F represents the original intermediate feature and F
′
represents the fea-

tures after adapter. GELU(·) stands for the GELU activation function, and
MLPdown(·) and MLPup(·) denote the linear layers for downward and upward
projection, respectively.

2.2 Prototype-based Prompt Generator

After fine-tuning the image through the SAM encoder, the resulting image em-
bedding is input into the subsequent mask decoder. Inspired by prompt learn-
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ing [16,18], we propose to utilize a learnable memory bank to store robust infor-
mation. Since prototype vector can capture global information from the feature
map and form a continuous semantic space [8], we adopt prototype generated
from embedding to interact with the memory bank.

Firstly, we employ global average and max pooling on the embedding to
obtain instance-level prototype pi. For each image xi embedded into ei, pi is
given by:

pi = GAP(ei) + GMP(ei), (3)

The memory bank is designed as a parameterized matrix M ∈ RN×C with
random initialization, where N represents the number of prototypes in the mem-
ory bank, and C represents their dimension. Given a prototype vector pi ∈ R1×C

of an image embedding, the memory bank module utilizes stored knowledge to
generate a domain-adaptive and robust prototype p̂i:

p̂i = pi ·M =

N∑
j=1

wi,jmj , (4)

where mj represents the j-th prototype in the memory bank, and wi,j represents
the similarity weight between the prototype pi of the image and mj.

We compute each weight wi,j via a softmax operation:

wi,j =
exp(Sim(pi,mj))∑N
j=1 exp(Sim(pi,mj))

, Sim(pi,mj) =
pi ·mj

T

∥pi∥∥mj∥
, (5)

where Sim(·, ·) denotes the cosine similarity operation.
For each image, p̂i is the adjusted and more robust prototype feature after

being updated through the memory bank. To better guide the embedding, we
first compute the cosine similarity between p̂i and ei to generate an activation
map Ai as the guidance information:

Ai = Sim(ζh×w(p̂i), ei), (6)

where ζh×w(·) expands the given vector to the same spatial size h× w as ei.
Then, we concatenate p̂i, ei, and the map Ai and input them into a 1 × 1

convolution to generate a specific prompt for image embedding:

Prompti = Conv1×1([p̂i, Ai, ei]), (7)

where Conv1×1(·) refers to a convolution layer with a kernel size of 1, which is
used to perform dimension reduction.

Overall, we introduce a novel module to store learned information, compute
instance-level difference and generate domain-adaptive prompt. We project all
target domain knowledge into the latent space and use source domain knowledge
of the memory bank to represent them, which helps to align the source and target
domain. This helps to improve the model’s generalization ability.
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Table 1. Quantitative comparison of our DAPSAM and some state-of-the-art single-
source domain generalization methods on prostate dataset. The best and second-best
are bolded and underlined, respectively. Each column represents leave-one-out results
for the model trained on the corresponding domain while testing on the other domains.

Method Model A B C D E F Average

Upper bound [15] U-Net 85.38 83.68 82.15 85.21 87.04 84.29 84.63

AdvBias [4]

U-Net

77.45 62.12 51.09 70.20 51.12 50.69 60.45
RandConv [32] 75.52 57.23 44.21 61.27 49.98 54.21 57.07
MixStyle [34] 73.04 59.29 43.00 62.17 53.12 50.03 56.78
MaxStyle [3] 81.25 70.27 62.09 58.18 70.04 67.77 68.27
CSDG [25] 80.72 68.00 59.78 72.40 68.67 70.78 70.06
CCSDG [14] 80.62 69.52 65.18 67.89 58.99 63.27 67.58

DeSAM [9][whole]
ViT

82.30 78.06 66.65 82.87 77.58 79.05 77.75
DeSAM [9][grid] 82.80 80.61 64.77 83.41 80.36 82.17 79.02
SAMed [33] 80.42 81.44 66.75 82.09 80.19 80.17 78.51

Baseline ViT 84.42 79.79 64.83 83.49 80.50 80.18 78.87
DAPSAM (Ours) 86.34 81.05 70.81 85.28 82.91 81.48 81.31

2.3 Training objective

Following SAMed [33] and TriD [6], we combine cross entropy loss and dice loss
to supervise the entire training process on the source domain:

L = (1− λ)LCE + λLDice, (8)

where λ denotes the weight to balance these two loss terms.

3 Experiments

3.1 Experimental Settings

The prostate dataset. The prostate dataset [21] comprises 116 MRI cases
from six different domains, namely A: RUNMC, B: BMC, C: I2CVB, D: UCL,
E: BIDMC, and F: HK. These cases were collected from three distinct public
datasets used for the purpose of prostate segmentation. The slices are resized
to a uniform 384×384 resolution with consistent voxel spacing. We employ the
Dice Similarity Coefficient (DSC) for the evaluation.
The RIGA+ dataset. The multi-domain joint OC/OD segmentation dataset
RIGA+ [1,7,13] is used in this paper. This dataset encompasses annotated fundus
images from five distinct domains: BinRushed, Magrabia, BASE1, BASE2 and
BASE3. For our segmentation model, we select BinRushed and Magrabia as the
source domains for training and subsequently evaluate the model’s performance
on the remaining three domains regarded as target domains. The DSC is also
employed as the metric to quantify the segmentation quality.
Implementation Details: The rank of the adapter is set to 4 for both effi-
ciency and performance optimization. All training is conducted using the ‘ViT-B’
version of SAM. The initial learning rate is set to 5e−4, and the weight decay for
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Table 2. Quantitative comparison of our DAPSAM and some state-of-the-art domain
generalization methods on RIGA+ dataset. The best and second-best are bolded and
underlined, respectively. In the upper part and lower part, BinRushed [Rows 3-13] and
Magrabia [Rows 14-24] are used as the corresponding source domain, respectively. We
run the proposed DAPSAM three times and report the mean and standard deviations.

Method BASE1 BASE2 BASE3 Average

DOD DOC DOD DOC DOD DOC DOD DOC

CSDG [25] 93.56±0.13 81.00±1.01 94.38±0.23 83.79±0.58 93.87±0.03 83.75±0.89 93.93 82.85
ADS [31] 94.07±0.29 79.60±5.06 94.29±0.38 81.17±3.72 93.64±0.28 81.08±4.97 94.00 80.62
MaxStyle [3] 94.28±0.14 82.61±0.67 86.65±0.76 74.71±2.07 92.36±0.39 82.33±1.24 91.09 79.88
SLAug [28] 95.28±0.12 83.31±1.10 95.49±0.16 81.36±2.51 95.57±0.06 84.38±1.39 95.45 83.02
D-Norm [36] 94.57±0.10 81.81±0.76 93.67±0.11 79.16±1.80 94.82±0.28 83.67±0.60 94.35 81.55
CCSDG [14] 95.73±0.08 86.13±0.07 95.73±0.09 86.28±0.58 95.45±0.04 86.77±0.19 95.64 86.57

DeSAM [9][w] 89.33±2.53 79.68±2.42 93.44±0.89 82.97±0.01 91.51±1.79 82.70±1.34 91.42 81.78
DeSAM [9][g] 91.79±1.62 80.87±0.11 92.57±2.04 82.95±1.62 93.66±0.07 84.19±1.79 92.67 82.67
SAMed [33] 95.28±0.07 84.24±0.10 94.11±0.10 80.21±0.64 94.84±0.08 82.60±0.32 94.74 82.35

Baseline 95.86±0.18 86.30±0.53 95.96±0.26 80.90±0.30 96.32±0.23 86.33±0.34 96.05 84.51
DAPSAM 96.34±0.17 88.24±0.16 96.10±0.10 86.31±0.13 96.34±0.14 88.77±0.21 96.26 87.87

CSDG [25] 89.67±0.76 75.39±3.22 87.97±1.04 76.44±3.48 89.91±0.64 81.35±2.81 89.18 77.73
ADS [31] 90.75±2.42 77.78±4.23 90.37±2.07 79.60±3.34 90.34±2.93 79.99±4.02 90.48 79.12
MaxStyle [3] 91.63±0.12 78.74±1.95 90.61±0.45 80.12±0.90 91.22±0.07 81.90±1.14 91.15 80.25
SLAug [28] 93.08±0.17 80.70±0.35 92.70±0.12 80.15±0.43 92.23±0.16 80.89±0.14 92.67 80.58
D-Norm [36] 92.35±0.37 79.02±0.39 91.23±0.29 80.06±0.26 92.09±0.28 79.87±0.25 91.89 79.65
CCSDG [14] 94.78±0.03 84.94±0.36 95.16±0.09 85.68±0.28 95.00±0.09 85.98±0.29 94.98 85.53

DeSAM [9][w] 82.45±2.61 69.66±2.94 84.97±0.32 75.75±1.36 83.86±2.99 74.74±2.54 83.76 73.38
DeSAM [9][g] 81.39±3.29 67.88±3.02 83.95±0.93 76.33±0.11 79.99±1.65 73.05±1.45 84.50 72.42
SAMed [33] 95.41±0.10 85.26±0.38 95.36±0.13 84.25±0.27 95.38±0.10 84.76±0.28 95.38 84.76

Baseline 95.50±0.33 86.63±0.22 95.88±0.24 88.29±0.35 96.37±0.23 87.61±0.30 95.92 87.51
DAPSAM 96.22±0.18 86.74±0.36 96.32±0.16 89.59±0.24 96.35±0.20 88.12±0.22 96.30 88.15

the AdamW optimizer is set to 0.1. We also adopt the warm-up strategy follow-
ing SAMed [33], with warm-up periods set to 250 and 25 for the prostate and
RIGA+ datasets respectively, due to different data-training settings. We apply
early stop at 160 epochs, with a maximum of 200 epochs. The hyperparameter λ
in Eq. (8) is set to 0.8. The baseline of our method is described at the begining
of Section 2.

3.2 Comparison with SOTA Methods

Results on prostate are presented in Table 1. Compared to the traditional
CNN-based U-Net structure, the ViT-based methods designed on SAM show su-
perior performance. Our method outperforms the best CNN-based method and
some recent SAM-based methods on the prostate dataset. Specifically, compared
to the baseline, our method achieves a 2.44% improvement. Moreover, compared
to the recently proposed SAM-based SDG medical segmentation method, De-
SAM [9], our approach exhibits a notable 2.29% enhancement.
Results on RIGA+ are presented in Table 2. Our DAPSAM still achieves
superior performance. When using BinRushed as the source domain, DAPSAM
surpasses the CNN-based state-of-the-art CCSDG [14] by 0.62% (96.26% vs.



8 Z. Wei et al.

Table 3. Ablation study on the effect
of different components on prostate. Our
adapter component consists of two parts:
low-level feature integration (LLFI) and
filtering (Filter). PPG: Prototype-based
Prompt Generator.

Baseline LLFI Filter PPG Average

✓ 78.87
✓ ✓ 79.29
✓ ✓ 79.52
✓ ✓ ✓ 79.97
✓ ✓ 80.31
✓ ✓ ✓ ✓ 81.31

Table 4. Ablation study of the mem-
ory bank size on prostate segmentation.
We vary the number of prototypes stored
in the memory bank. The first line is the
baseline model without domain-adaptive
prompt generator.

Num Params(K) FLOPs(M) Averaged

0 0 0 78.87
64 16 75.67 79.15
128 32 75.71 79.42
256 64 75.77 80.31
512 128 75.90 79.34
1024 256 76.16 79.13
2048 512 76.69 78.92

95.64%) and 1.30% (87.87% vs. 86.57%). Our method also outperforms other
SAM-based methods and baseline. With Magrabia as the source domain, while
the baseline shows impressive results, DAPSAM further improves upon this per-
formance. These SOTA results further justify the robustness and competitiveness
of our DAPSAM.
More additional experimental results can be found in the supplementary.

3.3 Ablation Studies

We conduct extensive ablation studies of our method on the prostate dataset.
Effect of different components. We first assess the impact of the gener-
alized adapter. As demonstrated in the first to fourth rows of Table 3, when
supplementing only low-level features, the model shows a slight improvement.
Notably, using filtering mechanisms to remove redundant information leads to
further enhancement. These results reveal that our design not only supplements
crucial low-level information in medical image segmentation but also enhances
the robustness of intermediate features.

We further explore the role of the Prototype-based Prompt Generator module
(PPG). The results presented in the fifth row of Table 3 confirm that incorporat-
ing PPG yields a 1.44% boost in the average Dice score relative to the baseline.
This improvement distinctly highlights the PPG module’s ability to proficiently
utilize the knowledge acquired, thereby significantly enhancing the network’s
generalization capacity and robustness.
Effect of the memory bank size. We evaluate the impact of the hyper-
parameter N involved in Eq. (4). As depicted in Table 4, when N is set to a
lower value, suboptimal results implies that a smaller memory bank cannot fully
learn all the information. Conversely, an excessively high value of N leads to
a decline in performance, since a too large memory bank tends to overfit the
source domain information. Optimal performance is achieved for N is set to 256.
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4 Conclusion

In this paper, we first analyze the performance of fine-tuning large model SAM
for domain generalization, and find its excellent potential for generalizable med-
ical image segmentation. We then propose a novel prototype-based domain-
adaptive prompt generator to mine such potential of SAM in SDG medical im-
age segmentation. We also propose a more generalization-friendly adapter that
improves the robustness of image embedding, further boosting the model’s gen-
eralization ability. The proposed method termed DAPSAM outperforms some
state-of-the-art CNN-based and SAM-based methods on two widely used bench-
marks for generalizable medical image segmentation.
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