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Abstract. Accurate bronchoscope localization is essential for pulmonary
interventions, by providing six degrees of freedom (DOF) in airway navi-
gation. However, the robustness of current vision-based methods is often
compromised in clinical practice, and they struggle to perform in real-
time and to generalize across cases unseen during training. To overcome
these challenges, we propose a novel Probabilistic Airway Navigation Sys-
tem (PANS), leveraging Monte-Carlo method with pose hypotheses and
likelihoods to achieve robust and real-time bronchoscope localization.
Specifically, our PANS incorporates diverse visual representations (e.g.,
odometry and landmarks) by leveraging two key modules, including the
Depth-based Motion Inference (DMI) and the Bronchial Semantic Anal-
ysis (BSA). To generate the pose hypotheses of bronchoscope for PANS,
we devise the DMI to accurately propagate the estimation of pose hy-
potheses over time. Moreover, to estimate the accurate pose likelihood,
we devise the BSA module by effectively distinguishing between similar
bronchial regions in endoscopic images, along with a novel metric to as-
sess the congruence between estimated depth maps and the segmented
airway structure. Under this probabilistic formulation, our PANS is ca-
pable of achieving the 6-DOF bronchoscope localization with superior
accuracy and robustness. Extensive experiments on the collected pul-
monary intervention dataset comprising 10 clinical cases confirm the ad-
vantage of our PANS over state-of-the-arts, in terms of both robustness
and generalization in localizing deeper airway branches and the efficiency
of real-time inference. The proposed PANS reveals its potential to be a
reliable tool in the operating room, promising to enhance the quality and
safety of pulmonary interventions.

Keywords: Surgical navigation· 6-DOF bronchoscope localization· Prob-
abilistic formulation
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1 Introduction

Bronchoscopy has been a fundamental tool for examining and diagnosing airway
lesions, as well as performing biopsies for lung disorders [1]. During bronchoscopy,
surgeons utilize a camera-equipped flexible endoscope to perform a thorough in-
spection of the accessible bronchial branches and to navigate to lung peripheries
and nodules as seen in pre-operative CT scans. However, the bronchoscope’s lim-
ited field of view demands significant clinical experience for accurate localization
within the airways. Therefore, there is an urgent demand for automatic methods
to localize the bronchoscope with 6 DOF to assist airway navigation.

Various technologies have emerged to address this challenge, including elec-
tromagnetic (EM) navigation [7], 3D shape sensing [6], and visually navigated
bronchoscopy (VNB). Particularly, VNB emerges as a promising area of study
for its potential of accurate localization with cost-effectiveness. Existing VNB
approaches predominantly utilize singular visual cues for bronchoscope track-
ing, which are achieved by registration [15,4,19,2,17], retrieval [27,18], or visual
odometry [5,3]. Despite these efforts, current VNB studies are still in a devel-
opmental phase, facing several barriers to clinical implementation. Validation
relies on biased and limited datasets that mainly cover proximal branches, such
as insertion to a target site [18,2,22], casting doubts on their applicability in di-
verse clinical scenarios. Additionally, the absence of real-time operation in many
VNB solutions [19,24,2,8,13] and the necessity for extensive, case-specific train-
ing [18,27] hinder their integration into routine clinical workflows. Consequently,
VNB techniques are constrained by their limited robustness, absence of real-time
performance, and lack of adaptability.

The challenge of limited robustness in VNB suggests the adoption of strate-
gies used by experienced surgeons, who employ a comprehensive visual approach,
including monitoring bronchoscopic motion and identifying anatomical land-
marks, to pinpoint the bronchoscope’s location. In response, we present the
Probabilistic Airway Navigation System (PANS), enhancing localization robust-
ness through a Monte Carlo framework. Replicating the surgeons’ approach,
PANS integrates diverse visual representations (e.g., odometry and landmarks)
for bronchoscope tracking. Specifically, PANS incorporates the Depth-based Mo-
tion Inference (DMI) module to propagate endoscopic pose hypotheses overtime,
and the Bronchial Semantic Analysis (BSA) module that enhances pose likeli-
hood measurement by distinguishing airway landmarks in bronchoscopic frames.
The DMI module enhances case generalization by initially estimating the depth
of incoming endoscopic frames prior to inferring camera motion. This transforma-
tion from RGB frames to the depth domain mitigates the issue posed by patient-
specific textures and variable endoscopic illumination conditions, enabling a mo-
tion inference network trained on synthetic data to adapt to real endoscopic im-
ages effectively. By distinguishing airway landmarks, the BSA module adeptly
clarifies ambiguities in similar airway areas, thereby significantly enhancing the
overall precision of localization. It employs a novel metric for evaluating the
congruence between depth estimations and segmented airway models, enhanc-
ing pose estimation’s robustness. Furthermore, for real-time application across
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Fig. 1: Overview of the proposed PANS for real-time bronchoscope localization.

varied cases, PANS incorporates optimized lightweight neural networks for depth
estimation, motion inference, and landmark detection. We perform an extensive
comparative evaluation against SOTA methods, showcasing the superior perfor-
mance of our PANS on real clinical datasets. Additionally, thorough ablation
studies highlight the effectiveness of leveraging multiple visual representations
and underscore the significance of the proposed BSA module in enhancing local-
ization accuracy.

2 Method

2.1 Overview

Our PANS is illustrated in Fig. 1. We consider the problem of estimating the
6 DOF pose of the endoscope, which encompasses its position and orienta-
tion, as inferring a latent state s from camera image observations x. Due to
the challenges in parameterizing the inherent uncertainties in the motion and
operating conditions of the endoscope, we adopt a non-parametric way of rep-
resenting probability distribution for the current endoscope pose state st, or
commonly referred to as belief. This is achieved by utilizing a particle filter to
approximate the belief distribution through a set of discrete samples or particles

St = {s[1]t , s
[2]
t , . . . , s

[N ]
t }. Each particle s

[i]
t (1 ≤ i ≤ N) is a hypothesis of the

endoscope state st at time t, and N is the number of particles. The likelihood of

each particle’s represented state is denoted in the set Wt = {w[1]
t , w

[2]
t , . . . , w

[N ]
t }.

The essence of endoscopic tracking within our framework lies in generating St

that more closely approximates the actual endoscopic state and in accurately
determining Wt.

The current belief St is defined through a recursive Bayesian update. Initially,
we estimate the endoscope’s odometry by deriving the relative motion from xt−1

and xt, represented by ∆s. We propose a Depth-based Motion Inference (DMI)
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module to calculate ∆s (§ 2.2). This estimate is then used to propagate the
particle set St by sampling from the state transition distribution:

s
[i]
t ∼ p(st|s[i]t−1, ∆s). (1)

Subsequently, the weights Wt are updated based on the current observation xt,
using the proposed Bronchial Semantic Analysis (BSA) module (§ 2.3) as well
as the centerline prior (§ 2.3), represented as:

w
[i]
t = p(s

[i]
t |xt). (2)

The bronchoscopic tracking pipeline is summarized in Algorithm 1.

2.2 Depth-based Motion Inference for Pose Hypotheses

In our PANS, we devise the DMI to accomplish motion prediction, by sampling
endoscopic state particles by a noisy state transition:

∆s = fθ(xt−1, xt), (3)

s
[i]
t = s

[i]
t−1 ⊕∆s+ ϵ[i] ∼ N , (4)

where fθ is DMI module, θ are the feedforward network parameters, ⊕ denotes
pose concatenation, and ϵ[i] represents Gaussian noise. Specifically, the DMI
enhances case generalization by employing a two-step motion inference process,
following our previous study [22]. It first estimates the depth of endoscopic frames
and then deduces the camera motion. This approach reduces issues from variable
textures and lighting, allowing a motion inference network trained on virtual
depth to adapt to real endoscopic footage.

The depth estimation network is based on a cycle generative architecture [28].
Given an endoscopic frame xt ∈ X, the depth estimation network Gdepth : X →
Z maps the frame into its depth space Z, represented by zt = Gdepth(xt). Adver-
sarial loss Ladv, cycle consistency loss Lcyc and identity loss Liden are adopted
to guide the network in learning domain transfer and content preservation. The
LS-GAN loss [14] is implemented as adversarial loss Ladv and L1 losses are used
for Lcyc and Liden. To counteract scale instability and potential structural al-
terations in objects across different frames [11], view consistency loss Lrec and
geometry consistency loss Lgc in [22] are adopted to enhance the depth estima-
tion network’s scale perception. Concurrently, the motion inference network is
trained by minimizing the L2 norm of the discrepancy between predicted trans-
formation and ground truth transformation, utilizing depth and endoscopic pose
from virtual bronchoscopy as training data.

2.3 Bronchial Semantic Analysis for Pose Likelihoods

During measurement updates, particle weights are computed based on the sim-
ilarity between the current observation and the supposed observation of each
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Algorithm 1 The Pipeline of PANS for Bronchoscope Localization.

1: Input: Airway segments, initial bronchoscope pose, bronchoscopic frames {xt}Tt=1

2: Output: Estimated pose ŝt for each frame xt

3: Initialize particle set S0 around initial pose
4: for each time step t = 1 to T do
5: Estimate odometry ∆s using DMI (Eq. 3) based on xt−1 and xt

6: Update St by applying ∆s to St−1 (Eq. 4)
7: Calculate likelihoods Wt using BSA and centerline constraint (Eq. 5-8)
8: Compute estimated pose ŝt =

∑N
i=1 w

i
ts

i
t (Eq. 9)

9: Resample particles St based on Wt to focus on higher probability states
10: end for

particle state. Previous studies in bronchoscope localization have predominantly
relied on image intensity or structural similarity for matching virtual and real
endoscopic frames [12,19,2,8,13]. However, the high degree of similarity in en-
doscopic frames across various airway sections would lead these methods to en-
counter local minima, hindering their tracking performance.

To address the limitation of existing methods [12,19,2,8,13], we propose the
BSA to calculate pose likelihood based on endoscopic frame semantic analysis.
Specifically, we first identify the anatomical branches (e.g., the right upper lobe)
visible in the endoscopic view as landmarks. Subsequently, the BSA assesses the
likelihood of pose hypotheses by examining the alignment between the depth
estimation of each identified branch and the segmented airway model.

To overcome the similarity in different areas of the airway, BSA’s landmark
detection encompasses a three-stage pipeline: lumen detection, tracking, and air-
way association, as detailed in our prior work, BronchoTrack [23]. Initially, BSA
detects airway lumens without recognizing their anatomical branch label, us-
ing the high-performance YOLOv7 [25] detector. These lumens are then tracked
across subsequent frames using motion modeling and deep appearance descrip-
tors, which allow for re-identification even after temporary disappearance. Fi-
nally, a training-free airway association module matches these tracked lumens to
their corresponding anatomical branches by establishing a hierarchy of lumens,
leveraging CT segmentation for lumen recognition and utilizing tracking data for
label propagation. This approach maps each observed lumen to its anatomical
branch, and propagates their anatomical branch label temporally by tracking
them in successive frames.

Following the identification of airway anatomical branches, the BSA module
evaluates the likelihood of each pose hypothesis by measuring the discrepancy
between the depth estimation of detected branches and the projected point cloud
of these branches from the particle’s state, as follows:

w
[i]
t,l =

∑
k

D(h(otk),proj(mk, s
[i]
t )), (5)

where k is the anatomical label of detected airway branches, D is a distance met-
ric. The depth estimation h(otk) of each detected branch k is derived from esti-

mated depth within detected bounding box and is compared with proj(mk, s
[i]
t ),



6 Q. Tian et al.

Fig. 2: Localization trajectory and error on an example patient case. Two in-
spection trajectories into the left and right lung are presented separately.

which signifies the point cloud mk of segmented airway branch k projecting from
world coordinate to camera coordinate.

We adapt the Chamfer Distance into a binary count metric to evaluate the
overlap between two point clouds, accounting for outliers in the depth-estimated
cloud. This metric D is defined as:

D(A,B) =
1

|A|

∣∣∣∣{a ∈ A | min
b∈B

{d(a, b)} < ρ

}∣∣∣∣ (6)

where d is the Euclidean distance, ρ = 3mm is threshold for matching, and | · |
signifies counting of points.

Moreover, as bronchoscopes are typically near and oriented along the tubu-
lar’s centerline, we introduce a centerline constraint as prior knowledge, as:

w
[i]
t,c = N (e|0, σ1) · N (ϕ|0, σ2), (7)

where e is the distance from state s
[i]
t to the closest centerline, and ϕ represents

the angle between state s
[i]
t and the nearest centerline. σ1 and σ2 are set to r

2
and π

6 , with r being the radius of the nearest branch.

Combining w
[i]
t,l and w

[i]
t,c, the particle weights are updated by:

w
[i]
t =

w
[i]
t,l · w

[i]
t,c∥∥∥w[i]

t,l · w
[i]
t,c

∥∥∥ . (8)

By calculating the likelihoods of endoscopic state proposals, or particles, the
estimated endoscopic pose is calculated by the weighted sum of particles as:

ŝt =
N∑
i=1

wi
ts

i
t. (9)
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Fig. 3: (a) Localization ATE on different airway generations. (b) Localization
ATE for the top two methods across various branches in an example case.

3 Experiment

3.1 Dataset and Implementation Details

We conducted our experiments on 31 bronchoscopic intervention cases, each from
a different patient. For experiments, we allocated 20 for training, 1 for valida-
tion, and 10 for testing. Each test case covers both lungs through two sequences.
Bronchoscopic videos are filmed with the frame rate around 15fps using Olym-
pus bronchoscope during regular inspection procedure, where the bronchoscope
is inserted into every possible airway for thorough inspection. Patient airway
meshes are semantically segmented from CT scans [20,26], categorized by branch
anatomy. Our testing dataset spans shallow to deep airway branches up to the
5th generation. It features video frames with challenges like poor visibility, mo-
tion blur, and bubbles, presenting a wider range of difficulties than typically
reported. Fig. 2 displays the trajectory and select frames from a representative
case. Ground truth bronchoscope poses are manually labeled by experts through
registering virtual and real bronchoscopic views. More details are provided in the
supplementary material.

We utilized the Pytorch framework on an NVIDIA RTX 3090 GPU for train-
ing. All networks process frames resized to 256×256 pixels. The depth estimation
network, based on ResNet-50 [9], was trained with a learning rate of 0.0001 over
100 epochs and a batch size of 1, adhering to the weights of losses specified in
[22]. The motion inference network, utilizing a FlownetC [10] encoder and MLP
decoder, was trained for 300 epochs with a learning rate of 1e-5 and a batch
size of 64. The YOLOv7 [25] lumen detector underwent training for 300 epochs
with a batch size of 64. The appearance descriptor for lumen tracking adopts a
ResNet-50 architecture trained by image retrieval follows [23].

3.2 Comparison Results

Our PANS is evaluated against SOTA monocular endoscopic localization tech-
niques. This comparison encompasses depth registration (Depth-Reg) approaches
[19,2], the DD-VNB [22], and EDM [16]. Evaluation metrics adhere to VNB re-
search standards [19,8,22]. Table 1 shows that our method outperforms SOTA
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Table 1: Localization across the 10-
patient cases encompassing 20 se-
quences and 10,004 frames.
Method ATE (mm)↓ SR5↑ SR10↑
EDM 35.7 ± 23.2 3.90% 8.8%
Depth-Reg 35.1 ± 28.4 13.9% 25.7%
DD-VNB 15.0 ± 11.7 22.9% 44.3%

PANS w/o DVR 18.9 ± 18.6 15.1% 40.1%
PANS w/o BSA 15.1 ± 13.1 21.8% 49.2%
PANS 8.7 ± 6.0 28.4% 70.0%

Fig. 4: Performance of PANS
with different particle numbers.

by a significant margin across all evaluated metrics, achieving a localization
ATE of 8.7 ± 6.0 mm and SR10 of 70.0%. When compared to methods that
rely solely on registration [19,2] or visual odometry [16], PANS demonstrates
superior performance, benefiting from diverse visual representations. Moreover,
PANS outperforms hybrid approach [22], underscoring its effective probabilis-
tic framework and semantic analysis. Fig. 2 illustrates a test case visualization;
additional results are in the supplementary materials.

The comparative localization accuracy of our method against SOTA across
various airway generations is depicted in Fig. 3. Our technique demonstrates
consistent accuracy even as it navigates deeper into the airway generations.
In contrast, DD-VNB, Depth-Reg, and EDM exhibit a decline in performance
with increasing airway depth. Specifically, EDM, which relies on incremental
camera motion estimation, experiences a progressive deviation from the ground
truth over time. Both DD-VNB and Depth-Reg struggle in the deeper airways,
potentially due to the structural homogeneity present in the smaller bronchi.

3.3 Ablation Studies

We assess the impact of Diverse Visual Representations (DVR) and BSA in Ta-
ble 1. The PANS w/o DVR variant, which excludes the landmark weight and
localize depending solely on motion inference with centerline guidance, demon-
strates a notable drop in performance, highlighting the critical contribution of
multiple visual representations to accuracy and robustness. Furthermore, PANS
w/o BSA substitutes landmark-based matching with global NCC depth match-
ing, following the approach in [22,19]. The increase in SR10 indicates enhanced
tracking success across more frames, suggesting greater localization robustness.

We also conduct a particle number sensitivity test on the validation set to
assess the trade-off of accuracy and computational efficiency [21], by normalizing
the lowest ATE to 100% accuracy, as illustrated in Fig. 4. For comparison and
ablation studies, we set the particle number to 216, aligning PANS’s speed with
the video capture rate of approximately 15Hz for real-time processing. Our PANS
surpasses other methods in speed, especially those independent of case-specific
training. Depth-Reg methods such as Shen et al. [19] operate at 0.35 fps, and



Probabilistic Airway Navigation System for Bronchoscope Localization 9

Banach et al. [2] take roughly 2s per camera pose. Other approaches include Gu
et al. [8] at 5 fps, Luo et al. [13] at 0.41s per frame, and Wang et al. [24] at 0.08s
per frame. Although DD-VNB [22] demonstrates real-time speeds, it does not
match PANS’s accuracy and robustness in deeper airway generations.

4 Conclusion

In this work, we propose an innovative bronchoscope localization framework,
named PANS, leveraging comprehensive deep representations into a Monte-Carlo
framework to enhance robustness. Specifically, we propose the Depth-based Mo-
tion Inference (DMI) module to propagate endoscopic pose hypotheses over time,
and the Bronchial Semantic Analysis (BSA) module that enhances pose likeli-
hood measurement by distinguishing airway landmarks in bronchoscopic frames.
Tested on a 10-patient dataset from real interventions, our PANS excelled in
tracking within complex airway branches, achieving real-time performance and
generalization beyond the training data.
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