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Abstract. Multiple Sclerosis (MS) is a chronic and severe inflamma-
tory disease of the central nervous system. In MS, the myelin sheath
covering nerve fibres is attacked by the self-immune system, leading to
communication issues between the brain and the rest of the body. Image-
based biomarkers, such as lesions seen with Magnetic Resonance Imaging
(MRI), are essential in MS diagnosis and monitoring. Further, detecting
newly formed lesions provides crucial information for assessing disease
progression and treatment outcomes. However, annotating changes be-
tween MRI scans is time-consuming and subject to inter-expert variabil-
ity. Methods proposed for new lesion segmentation have utilized limited
data available for training the model, failing to harness the full capac-
ity of the models and resulting in limited generalizability. To enhance
the performance of the new MS lesion segmentation model, we propose
a self-supervised pre-training scheme based on image masking that is
used to initialize the weights of the model, which then is trained for
the new lesion segmentation task using a mix of real and synthetic data
created by a synthetic lesion data augmentation method that we pro-
pose. Experiments on the MSSEG-2 challenge dataset demonstrate that
utilizing self-supervised pre-training and adding synthetic lesions during
training improves the model’s performance. We achieved a Dice score of
56.15±7.06% and an F1 score of 56.69±9.12%, which is 2.06% points and
3.3% higher, respectively, than the previous best existing method. Code
is available at: https://github.com/PeymanTahghighi/SSLMRI.

Keywords: Multiple Sclerosis · White Matter Lesion · MRI Segmenta-
tion · Self-supervised learning.

1 Introduction

Multiple Sclerosis (MS) stands as a chronic autoimmune disease targeting myeli-
nated axons in the Central Nervous System (CNS). It impacts approximately 2.8
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million individuals worldwide, with a prevalence rate of 35.9 cases per 100,000
and a female-to-male ratio of 2:1. [24]. These attacks in the CNS lead to the
formation of focal lesions in the white matter. Magnetic Resonance Imaging
(MRI) and, particularly, FLuid Attenuated Inversion Recovery (FLAIR) images
are commonly used for understanding the quantity, distribution, and evolution
of these white matter lesions, especially the emergence of new ones, which can
be utilized during clinical treatment for assessing the disease status [14]. Manual
delineation of newly appeared MS brain lesions from MRIs is a labor-intensive
task and prone to expert annotation variability [1]. Consequently, the automated
segmentation of the newly appeared lesions associated with MS is imperative for
establishing a Computer-Aided Diagnosis system suitable for clinical applica-
tions.

Recent advancements in medical image segmentation using deep learning
have succeeded in segmenting different structures from MRI scans [15, 23], and
since delineating new lesions can be defined as a segmentation problem, attempts
have been made to solve this problem using well-established segmentation meth-
ods [7, 2, 25]. For instance, Cabezas et al. [7] employed attention modules for
feature fusion in the UNet [22], achieving third place in the MSSEG-2 [7] chal-
lenge with a 48.5% Dice score. Ashtari et al. [2] utilized a 3D UNet model with
group normalization before convolutional layers and achieved a 45.6% Dice score
on the MSSEG-2 challenge training set. Wu et al. [25] addressed data scarcity by
proposing a heterogeneous model incorporating multi-time and single-time point
MRI scans and introducing a new dataset for single-time point MRI scans. De-
spite achieving state-of-the-art results with a 59.91% Dice score on a single fold
of the MSSEG-2 challenge training dataset, this came at the expense of gather-
ing and labelling a new dataset. Tackling data scarcity has also been studied by
Basaran et al. in three different studies in which they utilized CarveMix [4], Gen-
erative Adversarial Networks (GANs) [5] and proposed LesionMix [10] to add
new synthetic lesions and in all cases, it improved the segmentation performance
of the model.

Acquiring a large, labelled dataset of longitudinal MRI scans for MS lesions
is challenging, and it requires time-consuming expert annotations of multi-time-
point MRI data. Additionally, the frequency of appearance of new lesions in the
longitudinal data is often low, causing data imbalance and challenges for training
deep neural networks. Motivated by this, a self-supervised pre-training based on
image masking is proposed. We also propose a synthetic lesion data augmentation
approach, which can be used during the model’s downstream task training in
combination with real data to address new lesion examples scarcity and the
high cost of gathering annotated longitudinal MRI scans. Detailed experiments
on the MSSEG-2 challenge dataset showed a Dice score of 56.15±7.06% and
F1 of 56.69±9.12%, which is higher by 2.06% points and 3.3%, respectively,
than the current sate-of-the-art method [25]. Overall, the contributions of this
work are: (1) Proposal of a self-supervised pre-training paradigm to enhance
the performance of the lesion segmentation model. (2) Development of a new
augmentation strategy for creating synthetic white matter lesions to alleviate the
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problem of data scarcity. (3) Achieving state-of-the-art results on the training
set of the MSSEG-2 challenge dataset using 5-fold cross-validation.

2 Methods

2.1 Self-supervised pre-training

To enhance the performance of the segmentation model, we pre-trained the
model with a masking pretext task similar to [23, 3], in which we masked cer-
tain parts of an MR image to remove brain structures and tasked the model
to regress the differences between two given MR images, i.e., the original and
the masked images. We defined a model fθ (x1, x2, d) → R for self-supervised
pre-training, where x1 and x2 are the first and second input MR images, respec-
tively, and similar to [25], d is the difference between the first and second inputs,
i.e., d = x1 − x2.

Let mbase be an MR image, and we want to mask certain parts from it to
create mmasked. To find candidate locations for masking on the brain surface,
Otsu threshold [21] was done on mbase to ignore black regions such as Cere-
brospinal Fluid (CSF). Then, 1 to 5 voxels were sampled as the center location
to generate cuboids. The cuboids’ side sizes were sampled from a uniform dis-
tribution between 3 and 10 mm to mask regions of varying sizes. These cuboids
were stored in a tensor, c, filled with ones inside the sampled cuboid regions
and zeros everywhere else. A Gaussian filter with σ randomly sampled from a
uniform distribution between 2 and 4 was applied to c next to generate cblur

(Figure 1b) for smoother masking, and we chose a small σ to maintain the over-
all shape of cuboid regions. A Gaussian filter with σ = 7 for a strong blurring
effect was applied to mbase to obtain mblur (Figure 1c). Then mbase and mblur

were combined to produce the masked MR image:

mmasked = (1− cblur)⊙mbase + cblur ⊙mblur (1)

Where ⊙ represents the point-wise multiplication.

To generate a binary mask of the masked region to guide the training, cblur

was then lower thresholded with T = 0.8 to only include strongly masked areas,
since a voxel value close to 1 in cblur cause that voxel to take most of its value
from mblur leading to a stronger removal. We call this binary mask h (Figure 1e).
Regions represented with ones in h correspond to regions that did not change,
and regions filled with zeros correspond to regions that have changed during the
masking process. To make the trained model insensitive to changes such as noise,
Gaussian smoothing, Gaussian Noise and Gibbs Noise were applied to mmasked

randomly after masking.

For training, the output was a heatmap highlighting the difference from the
first input (x1) to the second (x2), in which, if added to the x1, the result would
match x2. Motivated by recent methods in depth estimation [12], the model was
run twice to generate two outputs op1 and op2 by permuting the order the inputs
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(a) mbase (b) cblur (c) mblur (d) mmasked (e) h

Fig. 1. Overall masking steps. (a) MR image to be masked (mbase). (b) Randomly
generated smoothed regions that will be used for masking (cblur). (c) Smoothed MR
image (mblur). (d) Masked image (mmasked), and (e) binary map indicating the voxels
that changed during masking in black. The red rectangles in (a) and (d) highlight the
changes inserted due to the masking process.

mbase and mmasked were presented to the model (Figure 2a):

op1 = fθ
(
x1 = mbase, x2 = mmasked, d = mbase −mmasked

)
op2 = fθ

(
x1 = mmasked, x2 = mbase, d = mmasked −mbase

)
(2)

Five different pre-training loss terms were utilized. Absolute reconstruction error
between the reconstructed masked MR image, rmasked, and the actual masked
MR image, mmasked:

Lp1 =
∣∣rmasked −mmasked

∣∣ s.t rmasked = op1 +mbase (3)

Absolute reconstruction error between reconstructed base MR image rbase and
the actual base MR image, mbase:

Lp2 =
∣∣rbase −mbase

∣∣ s.t rbase = op2 +mmasked (4)

As both outputs should represent the same changes with different signs (op1 =
−op2) and following recent methods in depth estimation [12], a consistency loss,
Lp3, was defined to enforce this:

Lp3 = |op1 + op2| (5)

To force the model to neglect changes due to noise added through augmentations
to mmasked, Lp4 and Lp5 were defined as below:

Lp4 = |op1 ⊙ h| Lp5 = |op2 ⊙ h| (6)

By minimizing losses in Equation 6, we enforced the model only to generate
an output for the target masked region, as shown in black in Figure 1e and
ignore changes in other areas, shown in white, which came from augmentations
we applied to mmasked. The final loss function was the sum of all loss func-
tions defined here with equal contribution. We utilized the VNet [20] as the
deep learning model for both segmentation and self-supervised pre-training. For
the self-supervised pre-training, following [23], a convolutional head was added
on top of the last encoder output, replacing the VNet decoder, which consists
of upsample→conv3d→instance norm→ReLU. Features from this level of the
encoder were upsampled first by this head before the final convolutional layer.
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Fig. 2. (a) For self-supervised pre-training, our model generates two outputs, op1 and
op2 which represent changes from mbase to mmasked and mmasked to mbase respectively.
To only focus on masked regions and ignore changes in other areas due to noise, both
op1 and op2 were compared against h, which is a binary mask only highlighting masked
regions. (b) For new lesion segmentation, our model outputted new appeared lesions
from mnl

1 to mdl+sl
2 in step 1 and mnl

2 to mdl+sl
1 in step 2. Since both seg1 and seg2

predicted the same set of newly appeared lesions, we defined Ls3 to enforce this.

2.2 Synthetic lesions

Let m be the given MR image; in the first step, we applied a lower threshold to
find a rough white matter mask. The threshold value was set to be the peak of
the histogram computed on the voxels inside the brain mask since white matter
voxels have the highest occurrence [13], and we call this tr1. To filter out black
regions in FLAIR scans, such as CSF, higher Otsu thresholding was performed,
and we call it tr2. Gradients ofm were calculated using the Sobel filter [11] to put
lesions only on smooth regions without abrupt changes in intensity and removing
edges, and lower thresholded using Otsu, to have gr. The set of possible locations
for a synthetic lesion, s, was the intersection of tr1, tr2 and gr. To reduce outliers,
a morphological opening [11] was performed on s using a 3 × 3 × 3 structuring
element. A random number of points between 1 and 5 were sampled from s to
determine synthetic lesion locations. An initial cuboid was used for each lesion,
with side sizes randomly sampled from a uniform distribution between 1.5 and 4
mm. This range was determined based on the sizes of lesions in the dataset, with
the aim of enhancing the model’s generalizability. These lesions were then stored
in a binary tensor l, where lesions were filled with ones and zeros elsewhere. To
have a smoother blending of the lesions to m and to randomize the shape of the
initial cuboid, Gaussian smoothing was applied with σ randomly sampled from
a uniform distribution between 2 and 8, resulting in lblur, as shown in Figure 3c.
Note that although we started with a cuboid, Gaussian smoothing can transform
it into arbitrary shapes, such as ellipsoid. As the final step, synthetic lesions were
blended to m to have msl through the following equation (Figure 3d):

msl =
((
1− lblur

)
⊙m

)
+ lblur (7)
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(a) m (b) s (c) lblur (d) msl

Fig. 3. Steps of adding synthetic lesion. (a) Input MRI. (b) Candidate locations on
white matter. (c) Random lesion shape generated. (d) Added lesion.

2.3 New lesion segmentation

The segmentation model objective was to generate a binary output that marks
newly appeared lesions. Let mnl

1 be the baseline MR image with no new lesions
and mdl

2 be the follow-up MR image with dataset-provided newly appeared le-
sions marked by binary mask gtdl. We first added dataset-provided new lesions
in mdl

2 to mnl
1 using CarveMix [26] and similar to [4] to have mdl

1 and then re-
moved these lesions from mdl

2 using masking method explained in section 2.1 to
have mnl

2 with no newly appeared lesions. Then, we added the same synthetic
lesions to both mdl

1 and mdl
2 to have mdl+sl

1 and mdl+sl
2 with gtdl+sl marking

both dataset-provided and synthetic lesions. To this point, we have two different
MR images with the same new lesions mdl+sl

1 and mdl+sl
2 , and new lesions mask

gtdl+sl (including synthetic and dataset-provided new lesions) and two MR im-
ages mnl

1 and mnl
2 with no newly appeared lesions. Augmentations such as Gibss

Noise and Gaussian noise were applied next to both mdl+sl
1 and mdl+sl

2 . Similar
to self-supervised pre-training, we defined the model as fθ (x1, x2, d) → {0, 1}.
The model outputs sigmoid probabilities, seg1 and seg2 as below (shown in
Figure 2b):

seg1 = fθ
(
x1 = mnl

1 , x2 = mdl+sl
2 , d = mnl

1 −mdl+sl
2

)
seg2 = fθ

(
x1 = mnl

2 , x2 = mdl+sl
1 , d = mnl

2 −mdl+sl
1

)
(8)

Where seg1 specifies new lesions from mnl
1 to mdl+sl

2 , and seg2 specifies the new
lesions from mnl

2 to mdl+sl
1 . By doing so, we increased the number of examples

of two timepoints MR images with new lesions to which our model was exposed.
We defined two loss function terms, Ls1 and Ls2 as below:

Ls1 = Dice
(
seg1, gt

dl+sl
)
+ α BL

(
seg1, gt

dl+sl
)

Ls2 = Dice
(
seg2, gt

dl+sl
)
+ α BL

(
seg2, gt

dl+sl
)

(9)

Here, Dice was combined with boundary loss, which was introduced to mitigate
challenges in highly imbalanced segmentation tasks [16, 18], and α controls the
contribution of boundary loss. Since both seg1 and seg2 are predicting the same
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set of newly appeared lesions and motivated by recent research in depth estima-
tion [12], a consistency loss between two output segmentations was also defined
below, as shown in Figure 2b:

Ls3 = Dice (seg1, seg2) (10)

The final loss function was the summation of all the defined loss functions with
equal contributions.

3 Experiments and Results

3.1 Dataset

We evaluated the proposed method on the MICCAI-21 MS new lesion segmen-
tation challenge dataset (MSSEG-2) [7], which contains FLAIR images of MS
patients at two timepoints. The follow-up data were obtained within 1–3 years
after the first examination from 15 different scanners. The annotations were
limited to new lesions at the second time point, omitting the delineation of
growing or shrinking lesions. Four expert neuroradiologists initially segmented
new lesions. A senior expert resolved disputes, followed by consensus fusion via
majority voting. Since the test set from the challenge was not provided, we only
had access to 40 MRI scans of the training set to train and evaluate our model
using 5-fold cross-validation. We utilized the same folding split to train and eval-
uate our model and all the compared methods here. The MICCAI-16 (MSSEG)
[9] dataset was utilized for self-supervised pre-training, including 53 single time-
point FLAIR MRI scans from four scanners. Note that no overlap exists between
MSSEG and MSSEG-2 datasets.

3.2 Implementation details

The MSSEG and MSSEG-2 datasets were pre-processed using rigid registration,
bias correction, denoising, and skull stripping using the official code provided by
the event organizers. For training the segmentation model and self-supervised
pre-training, patches of size 96 × 96 × 96 were used, and voxel intensity values
were normalized by subtracting the mean and dividing by the standard deviation
of each MRI. A batch size of four was used with an initial learning rate of 1e−4

with AdamW [17] as the optimizer and models were trained for 500 epochs.
Python 3.9.7, Pytorch 2.1.2 and MONAI [6] were utilized to implement models.
We chose α = 10 for the boundary loss.

3.3 MS lesion segmentation

To report segmentation results, besides common segmentation metrics, including
the Dice and Hausdorff Distance (HD) [19], the F1-score was also calculated,
indicating how many new lesions have been (in)correctly detected independent
of the precision of the contour [8]. Here, small lesions, smaller than 3 mm3, were
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Table 1. Comparison between our proposed method and alternative approaches. All
results are expressed as mean ± std. Ablation study results are also provided.

Methods Dice(%) ↑ HD(mm) ↓ F1(%) ↑
Coact [25] 54.09±8.71 44.20±8.47 53.39±6.01

SNAC [7] 52.05±13.16 50.12±15.50 45.94±13.71

Pre-activation UNet [2] 45.6±9.5 40.1±13.2 51.9±11.3

Our method 56.15±7.06 37.13±13.29 56.69±9.12

Ablation

without pre-training 53.98±7.6 42.15±15.29 49.53±8.91
without consistency loss 51.25±8.6 45.12±8.50 50.36±11.71
without boundary loss 55.56±8.2 38.25±15.36 56.01±7.55
without dataset-provided lesions 52.36±6.55 54.37±10.37 51.95±6.34

excluded from F1 computations [8]. Comparison results in Table 1 indicate that
our proposed method outperformed previously proposed methods.

Figure 4 qualitatively compares the output segmentation of our method, and
Coact [25]. Having been trained on lesions of diverse shapes, sizes, and locations,
our model exhibited a more robust performance, particularly with tiny, low-
contrast lesions. To further explore the effectiveness of the self-supervised pre-

MRI 1 MRI 2 GT Coact [25] Ours

Fig. 4. Comparative visualization of predictions by the proposed model and Coact [25].

training model, consistency loss, boundary loss, and synthetic lesions, ablation
studies were performed, and the results are provided in Table 1. As shown, 1)
removing self-supervised pre-training led to the largest decrease, with a 7.16%
drop in F1 score, and a 2.17% reduction in Dice, 2) adding consistency loss had
the highest impact on Dice, with an increase of 4.9%, 3) adding boundary loss
slightly improved Dice, HD and F1 by 0.59%, 1.12 mm, and 0.68%, respectively,
4) utilizing synthetic lesions, without using the dataset-provided new lesions,
our model beat two of the three compared methods for Dice and F1.
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4 Discussion and Conclusion

In this work, a self-supervised pre-training scheme was proposed to enhance the
performance of segmenting new lesions between the baseline and follow-up MRI
scans. To combat data scarcity challenges, a simple data augmentation strategy
was proposed, to imitate the shape, size, and location of lesions. Experiments
on the MSSEG-2 dataset showed that both proposed methods significantly im-
prove segmentation accuracy. A limitation of this work in the context of clinical
applications is that only newly appeared lesions between two MRIs were seg-
mented because only new lesions were labelled in the dataset. However, growing
and shrinking lesions must also be addressed as they have a clinical impact on
monitoring MS progression, suggesting a future research direction.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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