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Abstract. The MRI-derived brain network serves as a pivotal instru-
ment in elucidating both the structural and functional aspects of the
brain, encompassing the ramifications of diseases and developmental pro-
cesses. However, prevailing methodologies, often focusing on synchronous
BOLD signals from functional MRI (fMRI), may not capture directional
influences among brain regions and rarely tackle temporal functional
dynamics. In this study, we first construct the brain-effective network
via the dynamic causal model. Subsequently, we introduce an inter-
pretable graph learning framework termed Spatio-Temporal Embedding
ODE (STE-ODE). This framework incorporates specifically designed di-
rected node embedding layers, aiming at capturing the dynamic interplay
between structural and effective networks via an ordinary differential
equation (ODE) model, which characterizes spatial-temporal brain dy-
namics. Our framework is validated on several clinical phenotype predic-
tion tasks using two independent publicly available datasets (HCP and
OASIS). The experimental results clearly demonstrate the advantages of
our model compared to several state-of-the-art methods.
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1 Introduction

Neuroimaging techniques, such as Magnetic Resonance Imaging (MRI), have sig-
nificantly advanced our understanding of the brain by providing a non-invasive
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way to explore its anatomical structures and functions. Recent advances in net-
work science have allowed for the analysis of MRI-derived brain networks, re-
vealing new biomarkers for diseases such as Alzheimer’s and enabling the study
of complex neural interactions across different brain regions [3].

Different MRI techniques reveal diverse aspects of brain organization and
dynamics. For example, diffusion MRI (dMRI) maps white matter connections
by tracking water molecule diffusion, showing how brain regions are structurally
linked. Functional MRI (fMRI), on the other hand, utilizes blood-oxygen level-
dependent (BOLD) signals to monitor brain activity, offering insights into func-
tional brain dynamics. Recent research utilizing fMRI BOLD signals to delin-
eate functional brain networks has made significant strides in identifying pat-
terns of connectivity through temporal correlations (e.g., Pearson correlation)
across different brain regions. These studies highlight the utility of fMRI in
mapping the intricate web of neural interactions, presenting the brain’s com-
plex connectivity patterns [20]. However, traditional methods primarily focus on
synchronous BOLD signals, which may overlook the nuanced directional influ-
ences (e.g., causality) between brain regions over time. To capture the directional
influences among brain regions, we employ Dynamic Causal Modeling (DCM)
[5,10] with time-lagged BOLD signals to construct temporal effective connec-
tivity networks. The temporal effective networks represent the dynamic causal
relationships where the activity of one brain region influences another over time.

In recent years, Graph Neural Networks (GNNs) [13] have become increas-
ingly prominent in brain network studies, showing significant advancements in
mining brain structural and functional networks [24]. Despite this progress, a
scarcity of graph learning methods is designed for dynamic effective network
learning [4]. The dynamic effective brain networks are a series of time-evolving
directed graphs, which may present two challenges when we build up GNNs
on these networks. First, existing GNNs focused on embedding nodes in undi-
rected graphs, which may not effectively handle directed graph embeddings.
Effective brain networks feature pairs of brain regions connected by directed
edges with different weights, where the edge direction and weight represent the
causal sequence and its magnitude, respectively. To address this, we propose a di-
rected graph encoder specifically designed for capturing these causal sequences
in brain node embedding. Furthermore, the dynamic effective brain network
consists of temporal sequences of brain graphs, with changing connectivity over
time. Thus, current GNNs need to be adapted to capture both spatial and tem-
poral dynamics of the brain. Recent efforts in dynamic graph learning include
approaches such as recurrent graph neural network [6], graph temporal atten-
tion network [15], and graph transformer [29]. In this study, we tackle the brain
spatial-temporal dynamics with an ordinary differential equation (ODE) model.
Particularly, we introduce a graph learning framework, Spatio-Temporal Embed-
ding ODE (STE-ODE), designed to simultaneously solve an Ordinary Differen-
tial Equation (ODE) and embed brain networks, capturing both their structural
and functional properties. The framework’s unique approach ensures that the
training process yields brain network embeddings that are, in essence, solutions
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Fig. 1. (a) describes the construction of brain effective networks from the BOLD sig-
nals. (b) is the directed graph embedding layer for structural and effective networks.
(c) presents the STE-ODE framework for different clinical prediction tasks.

to the ODE, thereby intertwining the learning model with the ODE resolution.
These embedded graph representations are then leveraged for different clinical
predictions, such as brain disease classifications. Beyond prediction tasks, our
study aims to identify most significant connectomes related to various clinical
phenotypes and neurodegenerative diseases, tracking their changes over time for
different tasks. To this end, we develop an interpretable toolkit within our di-
rected node embedding layer. This toolkit focuses on pinpointing the top K edges
with significant temporal changes, marking them as potential biomarkers for dis-
tinct phenotypes. This method directly connects dynamic brain network changes
to specific biological traits, enhancing our comprehension of the mechanisms tied
to different phenotypes. Our contributions can be summarized as follows. (1) We
design a directed graph embedding layer tailored for encoding effective network
under the constrains of its structural counterpart. (2) We present a learning
framework with the directed graph embedding layer, referred to as STE-ODE,
which captures temporal effective network representations by solving an ordi-
nary differential equation that models the brain spatial-temporal dynamics. (3)
We develop a toolkit to enhance the interpretability of our framework, which
enables the identification of the most significant connectome changes, marking
them as potential biomarkers for different clinical phenotypes.

2 Methodology

We first introduce our method for constructing directed effective networks through
the dynamic causal model (DCM). Additionally, we propose our interpretable
directed graph node embedding layer, which is tailored to encode both directed
effective networks and their structural counterparts. Subsequently, we detail our
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comprehensive spatio-temporal framework with the directed graph embedding
layer for downstream tasks. This framework involves solving an ordinary differ-
ential equation that captures the spatial-temporal dynamics of the brain.

2.1 Preliminaries

A brain network is a weighted graph G = {V,E} = (A,X) with N nodes, where
V = {vi}Ni=1 is the set of graph nodes representing brain regions, and E = {ei,j}
is the edge set. X ∈ RN×c is the node feature matrix where xi ∈ R1×c is the
i−th row of X representing the node feature (dim = c) of vi. A ∈ RN×N is the
adjacency matrix where ai,j ∈ R represents the weights of the edge between vi
and vj . A brain structural network, denoted as Gs, is an undirected graph, where
esi,j = esj,i ≥ 0. In stead, a brain effective network, denoted as Gf , is a directed
graph, where efi,j ̸= efj,i ∈ R. The sign of efi,j indicates the causal sequence
between vi and vj , where efi,j > 0 signifies the causal effect on vj induced by vi,
vice versa. Additionally, we denote the blood-oxygen-level-dependent (BOLD)
signal (with b signal points) obtained from fMRI as B ∈ RN×b.

2.2 Construction of Brain Effective Network

We employ fMRI BOLD signals to construct brain effective networks using the
dynamic causal modeling (DCM) approach [17,21]. Each brain region serves as
a graph node embedded within the brain effective network, while the temporal
dynamic effective connectivity comprises the edge set. Given the fMRI BOLD
signals, the dynamic adjacency matrix Af (t) can be modeled as follows:

dB(t)

dt
= αAf (t)B(t) + Cu(t) (1)

Cu(t) represents the term governing the influence of external neuronal inputs
u(t) on the dynamics of Af . In this work, Cu(t) = 0 as we concentrate on
resting-state fMRI studies. The parameter α serves as a constant regulating the
neuronal lag among brain nodes. Consequently, we can derive the expression of
Af as follows:

Af (t) =
1

αB(t)

dB(t)

dt
(2)

We construct the effective connectivity by deriving the discrete expression of the
Eq. (2):

Af (t) =
1

αB(t)

B(t+ 1)−B(t)

t+ 1− t
=

1

α
(
B(t+ 1)

B(t)
− 1) (3)

We define the connectivity between brain node vfi and vfj at timepoint t as
follows, with β = 1

α ∈ [0, 1]:

Af
i,j(t) = β(

Bj(t+ 1)

Bi(t)
− 1), (4)

where Bi is the BOLD signal of vi. The process of constructing brain effective
networks is illustrated in Fig. 1(a).
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2.3 Interpretable Structural-Effective Network Embedding

Given a directed effective network Gf = (Af , Xf ), we first perform asymmet-
ric Laplacian normalization on its adjacency matrix. The normalized adjacency
matrix can be represented as:

Ãf = D
− 1

2

in AfD
− 1

2
out , (5)

where Din and Dout are in-degree and out-degree of the adjacency matrix, re-
spectively. Then, our node embedding layer for the structural-effective network
can be formulated as a function FG :

Z = FG(Ã
s, Ãf , Xf ;W,γ, λ)

= σ(γ ⊙ Ãs ⊙ [λÃf + (1− λ)Ãf⊤]XfW ), (6)

where Ãs represents the Laplacian-normalized adjacency matrix of the brain
structural network [13]. The brain structural network serves as spatial informa-
tion to constrain the temporal function dynamics, under the assumption that
two brain regions are functionally interconnected as long as they are structurally
connected [22]. σ(·) is a nonlinear activation function, such as ReLU. λ ∈ [0, 1]
is a parameter that balances the information flow into and out of each brain
node. W represents trainable parameters for brain node embedding. γ ∈ RN×N

are trainable parameters used for model interpretability, enabling edge weights
to adapt themselves for different prediction targets. During the model validation
stage, we utilize self-adapted edge weights to track the most important connec-
tomes for various prediction tasks. The brain node embedding layer is depicted
in Fig. 1(b).

2.4 Spatio-Temporal Embedding with ODE

Given a series of temporal effective networks (i.e., Gf (t), t ∈ [0, T ]), their dy-
namic embeddings can be modeled using the following ordinary differential equa-
tion:

FG(G
f (t+△t),Θ) = FG(G

f (t),Θ) +

∫ t+△t

t

FG(G
f (τ),Θ)dτ, (7)

where Θ is the parameter sets (i.e., Θ = {W,γ, λ}) of the embedding function.
We can approximate the Eq. 7 into the discrete expression with our proposed
node embedding layer (see Eq. 6) as:

Z(t+ 1) = Z(t) + σ(γÃs ⊙ [λÃf (t+ 1) + (1− λ)Ãf⊤(t+ 1)]X(t+ 1)W ). (8)

We unfold the temporal brain network embedding into an residual graph learn-
ing framework. In this framework, each embedding layer processes the dynamic
effective network at Gf (t + 1), while the previous dynamic network embedding
(i.e., Z(t)) is treated as a residual term.
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Table 1. Classification accuracy and F1-scores, along with their standard deviations
under 5-fold cross-validation. The best results are highlighted in bold.

Method
HCP OASIS

Gender Disease ϵ4
Acc. F1 Acc. F1 Acc. F1

SVM 59.25±1.39 60.85±2.29± 57.72±0.98 56.58±1.93 58.09±2.37 59.83±0.99
GCN 68.83±1.48 67.48±2.32 64.64±1.05 66.58±2.12 65.56±1.51 64.28±1.11

DiffPool 73.25±0.71 70.43±1.87 71.67±0.83 69.58±1.75 69.04±2.52 70.42±0.87
LSTM 70.95±1.09 72.37±2.16 68.22±2.04 68.90±0.74 69.33±1.88 67.31±2.65

ST-GCN 78.44±0.86 76.15±1.17 76.26±0.98 77.02±1.47 77.20±1.79 78.14±1.35
FE-STGNN 81.04±0.39 81.75±1.26 79.92±0.73 79.39±1.15 78.98±0.92 80.06±0.85
Ours w/o SC 80.66±2.02 80.77±0.63 80.59±1.71 81.05±1.20 78.42±1.07 78.59±1.63

Ours 82.12±1.17 83.97±0.96 80.01±1.26 81.31±1.37 81.35±0.86 80.92±1.03

Table 2. Regression mean absolute values with their std under 5-fold cross-validation.
The best results are highlighted in bold.

Method HCP OASIS
MMSE DSM-Depr DSM-Antis MMSE

SVM 4.06±0.33 4.66±0.79 3.43±0.59 3.91±0.24
GCN 3.16±0.43 3.62±0.98 3.41±0.37 3.70±1.06

DiffPool 2.82±0.93 3.23±0.54 2.09±0.56 2.48±0.90
LSTM 2.74±0.91 2.37±0.61 1.91±0.47 1.88±0.51

ST-GCN 1.97±0.84 1.35±0.17 1.24±0.33 1.19±0.23
FE-STGNN 0.73±0.29 1.19±0.14 1.08±0.06 0.96±0.15
Ours w/o SC 0.93±0.44 1.24±0.32 1.19±0.24 1.08±0.33

Ours 0.62±0.23 1.08±0.45 0.92±0.79 0.76±0.17

2.5 STE-ODE Framework for Brain Network Predictions

The proposed STE-ODE framework, incorporating the spatio-temporal embed-
ding model, is depicted in Fig. 1(c). Assuming we have obtained the last node em-
bedding (i.e., Z(T )), we employ an average global pooling layer (ZG = 1

N

∑N
i=1

Zi(T )) to extract the entire graph representation. Subsequently, a fully con-
nected neural network (such as a Multilayer Perceptron or MLP) is employed to
generate the final classification or regression output (i.e., ŷ = MLP (ZG)). For
the classification task, we utilize the negative log likelihood loss function, where
L = NLL_Loss(ŷ, y). For the regression task, we use the L2 loss function, where
L = L2Loss(ŷ, y).

3 Experiments

3.1 Dataset Description and Preprocessing

Two publicly available datasets were used to evaluate our framework. The first
includes data from 1206 young healthy subjects (mean age 28.19 ± 7.15, 657
women) from the Human Connectome Project [25] (HCP). The second includes
1326 subjects (mean age = 70.42±8.95, 738 women) from the Open Access Series
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of Imaging Studies (OASIS) dataset [14]. Details of each dataset can be found
on their official websites. The preprocessing of functional BOLD signals and the
reconstruction of structural networks were conducted using CONN [26] and FSL
Probtrackx[12], respectively. For the HCP data, both structural and effective
networks have a dimension of 82×82 based on 82 ROIs defined using FreeSurfer
(V6.0) [9]. For the OASIS data, both networks have a dimension of 132 × 132
based on the Harvard-Oxford Atlas and AAL Atlas. This intentional variation in
network resolutions for the HCP and OASIS datasets served to examine whether
the dimension of the network or the choice of atlas influences the efficacy of our
newly developed framework.

3.2 Implementation Details and Experimental Setup

Implementation Details. We divided the BOLD signal B into T = 5 time
segments and calculated the mean value of the points within each segment to
construct 4 effective networks. The edge weights of both the effective networks
and structural networks were normalized to the intervals [−1, 1] and [0, 1], re-
spectively. Node features were initialized by sampling from a standard Gaussian
distribution with feature dimensions set to 16. Each dataset was randomly par-
titioned into 5 disjoint sets for 5-fold cross-validation in subsequent experiments.
The Adam optimizer was utilized to train the model with a batch size of 128.
The initial learning rate was set to 0.001 and decayed by (1 − current epoch

max epoch )0.9.
We also regularized the training with an L2 weight decay of 1e−5. We termi-
nated training if the validation loss fails to improve for 100 epochs, following the
epoch termination condition outlined in [19], with a maximum of 500 epochs.
All experiments were conducted on 1× NVIDIA A100 GPU.
Experimental Setup. We compared our approach against 6 baseline meth-
ods, including 3 static models (SVM [23], GCN [13] with global pooling, and
DiffPool [28]), and 3 dynamic brain network embedding methods (LSTM [8],
ST-GCN [11], and FE-STGNN [4]). The β parameter is set to 0.5 for all ex-
periments. We conducted a search for optimal λ parameter within the range of
[0.1, 0.3, 0.5, 0.7, 0.9] (refer to Supplementary for details). The resulting values
were λ = 0.3 for HCP and λ = 0.5 for OASIS.

3.3 Brain Network Predictions

Classification Tasks. ϵ4 allele is a strong risk factor for the Alzheimers’ Dis-
ease (AD) [18]. Table 1 presents classification results for gender on HCP, as well
as for AD and ϵ4 on OASIS. It shows that our model achieves the highest ac-
curacy across all tasks compared to other methods. Meanwhile, the comparison
between results obtained with and without structural connectivity (SC) demon-
strates the importance of anatomical (or spatial) constraints on effective network
representation learning. Furthermore, the dynamic methods consistently outper-
form the static methods, indicating their efficacy in brain network analysis by
capturing brain dynamics.
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Fig. 2. (a) illustrates the importance of various effective connectomes (i.e., |γ|) for
disease classification and DSM-Depr regression, with the most crucial connectomes
highlighted in bold red. (b) visualizes the brain dynamics of the identified effective
connectomes during an fMRI scan period, where colors tending towards red indicate
large values. (c) quantifies the change in the average strength of identified connectomes
during an fMRI scan period.

Regression Tasks. The Mini-Mental State Exam (MMSE [2]) serves as a quan-
titative assessment tool for cognitive status in adults. The Diagnostic and Sta-
tistical Manual of Mental Disorders (DSM [1]) offers a comprehensive measure
system for mental disorders utilized by mental health professionals worldwide.
Within the DSM system, DSM-Depr and DSM-Antis gauge two mental disorders
linked to depression and rebellious personality, respectively. Table 2 summarizes
the regression results for DSM and MMSE on the HCP and OASIS datasets,
showing that our model outperforms all baseline methods with lowest mean ab-
solute values.

3.4 Biological Insights and Model Interpretability

We provided two distinct biological insights from our interpretable framework.
Firstly, we utilized the designed parameter (γ) to identify the most crucial ef-
fective connectomes for various prediction tasks. Specifically, we pinpointed the
top 400 and 256 connectomes (highlighted in bold red curve in Fig. 2(a)) with
the highest |γ| weights for disease classification on OASIS and DSM-Depr regres-
sion tasks, respectively. Our disease classification results indicate that the high-
lighted connectomes are predominantly linked to the most relevant brain nodes of
Alzheimer’s Disease (AD), such as the right/left insula cortex, anterior/posterior
cingulate gyrus, and anterior/posterior divisions of the parahippocampal gyrus.
Additionally, connectomes associated with AD-relevant subnetworks, such as the
Default Mode Network (DMN) [7,27], are highlighted. Similarly, connectomes
connected to the most relevant brain nodes (e.g., left/right amygdala, hippocam-
pus and orbitofrontal) of depression are identified from DSM-Depr regression.
The Salience Network (SN) subnetwork, crucial for emotional regulation [16],
is also highlighted. Furthermore, we present the brain temporal dynamics of
the identified connectomes in Fig. 2(b), visualizing the related γ ⊙ Af derived
from the disease classification task at each of the four time-points to illustrate
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how the effective connectomes change during an fMRI scan period. To quantify
this change, we show the average of these γ weighted connectomes in Fig. 2(c).
It demonstrates that the causal influence strength of the normal control(NC)
group and the AD group decays simultaneously over time. However, the degree
of decline in the AD group is more pronounced than in the NC group.

4 Conclusion

We propose an interpretable spatio-temporal framework with directed graph
embedding layers for learning brain effective network representations, leverag-
ing ordinary differential equations to model brain dynamics. Our framework
contributes to important clinical prediction tasks, pinpointing important con-
nectomes linked to different clinical phenotypes and illustrating dynamic causal
influence strengths across fMRI scan periods. Future work will investigate dy-
namic causal influences at the level of brain ROIs.
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