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Abstract. Contrast-free AI myocardial infarction enhancement (MIE)
synthesis technology has a significant impact on clinics due to its ability
to eliminate contrast agents (CAs) administration in the current MI di-
agnosis. In this paper, we propose a novel cardiac physiology knowledge-
driven diffusion model (CPKDM) that, for the first time, integrates car-
diac physiology knowledge into cardiac MR data to guide the synthesis
of high-quality MIE, thereby enhancing the generalization performance
of MIE synthesis. The combining helps the model understand the princi-
ples behind the data mapping between non-enhanced image inputs and
enhanced image outputs, informing the model on how and why to syn-
thesize MIE. CPKDM leverages cardiac mechanics knowledge and MR
imaging atlas knowledge to respectively guide the learning of kinematic
features in CINE sequences and morphological features in T1 sequences.
Moreover, CPKDM proposes a kinematics-morphology diffusion integra-
tion model to progressively fuse kinematic and morphological features for
precise MIE synthesis. Evaluation on 195 patients including chronic MI
and normal controls, CPKDM significantly improves performance (SSIM
by at least 4%) when comparing with the five most recent state-of-the-art
methods. These results demonstrate that our CPKDM exhibits superi-
ority and offers a promising alternative for clinical diagnostics.

Keywords: Contrast-free technology · Cardiac physiology · Diffusion
model

1 Introduction

The contrast-free AI myocardial infarction enhancement (MIE) synthesis tech-
nology [1,2] has generated significant clinic impact for diagnosis. This technology
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Fig. 1: The contrast-free AI MIE synthesis technology is a safe, fast, and cost-
effective clinical alternative for the MI imaging based on CAs.

accurately synthesizes MIE images without contrast agents (CAs), offering ef-
fectiveness comparable to late gadolinium enhancement (LGE) images, such as
in highlighting the MI areas. It eliminates the high risk [3–5] of using CAs,
especially for patients with renal insufficiency. Moreover, it simplifies the clin-
ical workflow by reducing the need for multiple scans [6, 7], saving costs, and
preserving clinical resources. Therefore, this technology has great potential in
significantly improving the safety and effectiveness of diagnosis [1, 2].

Currently, only two AI methods [1, 2] have attempted to synthesize MIE
images without CAs. The principle behind these methods attempting to learn
cardiac structures and identify MI areas is the integration of myocardial kinemat-
ics and morphology. Specifically, based on this principle, these methods utilize
spatio-temporal networks to extract kinematic information from CINE sequences
and morphological information from T1 sequences, and then employ generative
adversarial networks [8] to generate an enhanced image. Finally, both methods
have achieved clinically accepted results.

However, even these two state-of-the-art contrast-free MIE image synthesis
technology [1,2] still struggles to demonstrate good performance when faced with
highly variable individuals, especially in effectively synthesizing MI areas. The
issue arises because these methods are purely data-driven, simply establishing a
mapping between non-enhanced image inputs and enhanced image outputs. This
simple mapping can mechanically instruct the model on what to do, but lacks
the depth to comprehend the intricate correlations between inputs and outputs.
When faced with highly variable individuals, this simple mapping relies solely on
its learned patterns, unable to dynamically adapt or generalize and to represent
the highly variable and complex features, resulting in synthesized images that
significantly differ from the actual LGE images.

In this paper, we propose a novel cardiac physiology knowledge-driven diffu-
sion model (CPKDM) to synthesize MIE images without CAs accurately. CP-
KDM innovatively combines cardiac physiology knowledge with the learning of
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Fig. 2: A novel knowledge-and-data-driven method is proposed for contrast-free
MIE image synthesis.

cardiac kinematics and morphological features from data. It helps the model
understand the underlying principles behind the data mapping between non-
enhanced image inputs and enhanced image outputs, informing the model on
how and why to synthesize MIE images. This integration enhances the model’s
generalization capability when faced with highly variable individuals. Specifi-
cally, CPKDM integrates cardiac mechanics knowledge, interpreting the learning
of kinematic features through stress calculations, thus better capturing abnormal
areas from CINE sequences. Additionally, CPKDM integrates MR imaging atlas
knowledge, guiding the learning of morphological features through myocardial
imaging signal patterns, thus effectively capturing morphological details. Lastly,
CPKDM proposes a kinematics-morphology diffusion integration (KMDI) model
to efficiently fuse kinematic and morphological features through progressive dif-
fusion process that incorporates a cross-attention mechanisms, thus precisely
synthesizing MIE images.

The paper introduces the following contributions: 1) For the first time, a
knowledge-and-data-driven method is proposed for contrast-free MIE image syn-
thesis, aimed at eliminating health risks associated with CAs and simplifying
clinical workflows. 2) A novel cardiac kinematics and morphology dual-stream
framework that leverages myocardial strain and myocardial imaging signal pat-
terns to respectively guide the learning of abnormal motion and structural details
is proposed. 3) A new state-of-the-art performance in the field of contrast-free
MIE image synthesis is attained, and design choices and model variants are
detailed analyzed.

2 Method

Our CPKDM is composed of a cardiac mechanics-guided kinematics interpreta-
tion (CM-KMI) module, a MR-enhanced spectral morphology perception (MR-
ESMP) module and a kinematics-morphology diffusion integration (KMDI) model.
The CM-KMI focuses on learning kinematic features derived from cardiac me-
chanics knowledge via CINE sequences. It separates myocardial contraction and
rotation features using cardiac mechanics equations and incorporates these fea-
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Fig. 3: Our CPKDM integrates a CM-KMI Module, a SA-CMMP Module and a
KMDI Model. By incorporating cardiac physiology knowledge, CM-KMI learns
kinematic features from CINE sequences, while MR-ESMP learns morphological
features from T1 sequences. KMDI progressively fuses kinematic and morpho-
logical features, ultimately synthesizing a MIE image.

tures into kinematic features to explain abnormal myocardial motion. The MR-
ESMP focuses on learning morphological features derived from MR imaging atlas
knowledge via T1 sequences. It segments cardiac structures from multi-phase T1
sequences using clustering based on myocardial imaging signal patterns and inte-
grates these clustering masks to identify sensitive structural features and subtle
abnormalities. Subsequently, KMDI focuses on fusing kinematic and morpholog-
ical features through a diffusion learning [9] process to generate MIE images.
It employs a cross-attention mechanism [10] across multiple timesteps to itera-
tively refine the integration of features, thereby leveraging the fused features to
accurately synthesize MIE images.

2.1 Cardiac mechanics-guided kinematics interpretation module

The CM-KMI utilizes myocardial strain during the cardiac cycle as cardiac me-
chanics knowledge to guide the learning of myocardial motion patterns from
CINE sequences. It employs myocardial circumferential and radial strains to dis-
tinguish between myocardial contraction and rotation features in spatio-temporal
dimensions, thereby accurately capturing cardiac dynamic details. It includes
a brightness-based optical flow tracking, a myocardial strain calculation based
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on cardiac mechanics, and a motion analysis network. The optical flow track-
ing enables to analyze changes in pixel brightness in CINE sequences. It utilizes
brightness variations between adjacent frames to accurately estimate myocardial
motion, thereby generating optical flow fields u. The strain calculation computes
the displacement differences ϵ between each pixel and its adjacent pixels within
the u.

ϵ = ∇u+ (∇u)T +∇u(∇u)T (1)

This process quantifies the relative deformation, which is then decomposed into
radial components ϵradi and circumferential components ϵcirc using the respective
myocardial strain formulas to obtain circumferential and radial strains.

ϵradi(x, y) = v(x, y) · p− c

∥p− c∥
, ϵcirc(x, y) = v(x, y) ·

(
−eradiy
eradix

)
(2)

The calculation for ϵradi(x, y) involves the dot product of the displacement vector
v(x, y) with the vector from the myocardial center c to a point p, normalized
by the magnitude of this vector. ϵcirc(x, y) is determined by the dot product of
v(x, y) with the unit vector perpendicular to the radial direction eradi. The ϵcirc
reflects myocardial wall shortening and thickening along its circumference, while
the ϵradi represents the wall’s radial thickening and transverse deformation, both
crucial for evaluating myocardial mechanics and function. Both are mapped into
feature vectors Fcirc and Fradi through encoders. Finally, the motion analysis
network sequentially introduces Fcirc and Fradi into the feature flow Fcine from
data, and then employs a recurrent neural network to process the fused features,
obtaining Fkine.

2.2 MR-Enhanced spectral morphology perception module

The MR-ESMP utilizes myocardial imaging signal patterns in multiphase T1
sequences as MR imaging atlas knowledge to guide the learning of cardiac struc-
tural features from T1 sequences. It exploits signal variations across different
time points in multiphase T1 sequences to identify spatio-temporal character-
istics of cardiac tissues, thus enhancing the capture of cardiac morphological
details. It includes a spectral clustering-based morphology segmentation and a
segmentation-based morphological enhancement network. The morphology seg-
mentation clusters eight native T1 inversion recovery–weighted images based on
variations in T1 signals to achieve spatially compact clustering, thereby gener-
ating a cardiac clustering mask. For each pixel i in image I, it assigns its visual
embedding i a three-dimensional sinusoidal positional encoding vector to capture
signal variations at the same location across different time points t.

PE(i, t, 2j) = sin

(
t

100002j/d

)
, PE(i, t, 2j + 1) = cos

(
t

100002j/d

)
(3)

In the morphological enhancement network, the autoencoder generates a mor-
phological mask under the constraints of the clustering mask, directing the en-
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coder to focus on morphological features Fmorp. Meanwhile, the network intro-
duces an edge-aware discriminator [11] that concentrates on the details of cardiac
structure.

2.3 Kinematics-morphology diffusion integration model

The KMDI fuses cardiac morphological and kinematic features through a pro-
gressive diffusion process that incorporates a cross-attention mechanism, thereby
synthesizing authentic image morphologies and precisely highlighting MI areas.
KMDI generates a noisy version xt of the input by adding T steps of noise after
introducing cardiac morphological features as the input x0. The synthesis process
uses a conditional denoising autoencoder ϵθ(xt, t, y), where the KMDI incorpo-
rates cardiac kinematic features as the conditional input y. The corresponding
objective can be simplified to

LDM := EE(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (xt, t, y)∥22

]
, (4)

with t uniformly sampled from {1, ..., T}. The neural backbone ϵθ(◦, t, ◦) is real-
ized as a time-conditional UNet with the cross-attention mechanism. The final
output, x, from the synthesis process can be decoded through a decoder in a
single step into the image space, generating an MIE image. Meanwhile, KMDI
introduces a discriminator, aiming to distinguish the final generated images from
real images, thereby enhancing the overall quality of image generation.

3 Experiments

3.1 Experimental setup

Dataset CPKDM is trained and tested on a generalized dataset that consists of
195 MI cases including chronic MI (140), and normal controls (55). All patients
completed CINE (14625 images), T1 maps(4680 images) and LGE (585 images)
MR imaging scans. All images were obtained using 3-T MRI scanners using T1-
weighted imaging. For more imaging details, please see Supplementary Material.
Implementation CPKDM used a 5-fold cross-validation (patient-wise) for
training and independent testing. All codes are based on the PyTorch. ADAM
optimizer [12] with a batch size of 1 and learning rate starts from 1e-4 (0.95
decays, tuned from [1e-3,1e-4,1e-5]). It required 38 hours for training, and 0.24
sec on average for a test image whose size is 128 × 128 on 4 × Nvidia 3090ti
GPUs.
Comparative methods and evaluation metrics CPKDM is compared
to five state-of-the-art methods, categorized into two groups: 1) Two recent
contrast-free MIE synthesis technology, PSCGAN [2] and VNE [1, 13, 14]. 2)
Three standard synthesis methods (Pix2Pix [15], BicycleGAN [16], and Res-
Vit [17]) in computer vision. CPKDM and five comparative methods evaluate
their performance in two aspects: imaging metrics and clinical metrics. For imag-
ing metrics, our network employs two categories of indices: image-level metrics
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Fig. 4: Our CPKDM achieves the best visual results in experiments.

(SSIM [18], PSNR, LPIPS [19], and MSE) are used to assess the entire image
quality, while region-level metrics (SSIM and PSNR) are utilized to evaluate the
image quality of MI areas. For clinical metrics, our network assesses the visual
spatial distribution and transmurality consistency of myocardial scarring [20].

3.2 Experimental results

Accurate contrast-free MIE synthesis Fig 4 presents that our CPKDM
enables the accurate synthesis of MIE without CAs. Our CPKDM surpasses

Table 1: Our CPKDM achieves the best overall performance in comparative
experiments and ablation experiments by four well-recognized metrics.
Experiments Methods SSIM↑ PSNR↑ LPIPS↓ MSE↓

Comparative
methods

PSCGAN 0.74 21.45 0.096 0.0058
VNE 0.66 19.78 0.145 0.0241

Pix2Pix 0.63 18.34 0.162 0.0236
BicycleGAN 0.56 19.52 0.168 0.0283

Res-Vit 0.65 18.57 0.153 0.0163

Ablation
Study

Only CINE 0.63 23.24 0.114 0.0042
Only T1 0.67 20.34 0.117 0.0053

Data-drive CINE 0.73 22.36 0.102 0.0063
Data-drive T1 0.72 23.56 0.92 0.0039
Pure data-drive 0.68 21.45 0.123 0.0069

CPKDM 0.78 26.97 0.083 0.0034
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Fig. 5: MIE revealed a right coronary artery territory myocardial scar in patient
A, and a left circumflex artery territory myocardial scar in patient B, all with
MIE images closely matching the signals revealed by LGE.

existing methods in imageology metrics, achieving a SSIM of 0.78, a PSNR of
26.97, a LPIPS of 0.083, and a MSE of 0.0034, at the image level, as shown in
Table 1; it attains an SSIM of 0.74 and a PSNR of 24.84, at the region level,
as shown in Table 2. Moreover, the clinical metrics results demonstrate high
concordance in visuospatial distribution and transmurality of myocardial scars
between the MIE images and the LGE images, indicating the high performance
of our CPKDM, as shown in Fig 5. Note that visualization results are enhanced
from contrast-free cardiac MR images, where myocardial scars may be nearly
invisible, while visible in LGE. These results proved our CPKDM has great
potential to advance contrast-free MIE technology for clinical application and
eliminate the high health risks associated with CA injection.

Outperformance of our CPKDM than all comparative methods Fig
4, Table 1 and Table 2 indicate that CPKDM outperforms all five comparative
methods in visualization and across four evaluation metrics. In Table 1 and Table
2, comparing with the results of the five comparative methods, our CPKDM
improved the SSIM by 0.04-0.22, the PSNR by 5.52-8.63, the LPIPS by 0.013-
0.085 and the MSE by 0.0024-0.0249, at the image level ; our CPKDM improved
the SSIM by 0.03-0.14 and the PSNR by 4.52-7.11, at the region level. All the
outperformance is because our CPKDM combine cardiac physiology knowledge
with cardiac MR image data, enhancing the effectiveness of the synthesized MIE.

Table 2: Our CPKDM also achieves the best overall performance at the region
level. For more experiment details, please see Supplementary Material.
Experiments Comparative Methods Ablation Study

Methods PSCGAN VNE Pix2Pix Data-drive
CINE

Data-drive
T1

Prue
data-drive CPKDM

SSIM↑ 0.71 0.68 0.60 0.70 0.71 0.66 0.74
PSNR↑ 20.32 17.73 18.59 20.64 22.12 19.42 24.84
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Superiority of our components in ablation experiments Table 1 and
Table 2 show that the integration of cardiac physiology knowledge is the main
reason for CPKDM to attain new state-of-the-art performance in this task. Com-
paring our CPKDM and five different versions (1. Input only CINE sequences; 2.
Input only T1 sequences; 3. CINE sequences without knowledge; 4. T1 sequences
without knowledge; 5. Both CINE and T1 sequences without knowledge), our
CPKDM improved a SSIM by at least 0.05, a PSNR by at least 3.41, a LPIPS
by at least 0.009 and a MSE by at least 0.0005, at the image level ; it improved
a SSIM by at least 0.03 and a PSNR by at least 2.72, at the region level.

4 Conclusion

In this paper, we propose a novel cardiac physiology knowledge-driven diffusion
model for synthesizing MIE images without CAs. Our approach innovatively
combines cardiac physiology knowledge with cardiac MR image data to enhance
image synthesis accuracy. Our approach obtains the highest performance by
evaluating our method on a generalization dataset (195 patients) and comparing
with five state-of-the-art methods in four well-recognized metrics. Such results
prove that our proposed approach provides contrast-free MIE comparable to
CA-based imaging, presenting a safer, faster, and cost-effective alternative for
clinical diagnostics.
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