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Abstract. Recent advancements in deep neural networks have shown
promise in aiding disease diagnosis and medical decision-making. How-
ever, ensuring transparent decision-making processes of AI models in
compliance with regulations requires a comprehensive understanding of
the model’s internal workings. However, previous methods heavily rely
on expensive pixel-wise annotated datasets for interpreting the model,
presenting a significant drawback in medical domains. In this paper,
we propose a novel medical neuron concept annotation method, named
Mask-free Medical Model Interpretation (MAMMI), addresses these chal-
lenges. By using a vision-language model, our method relaxes the need
for pixel-level masks for neuron concept annotation. MAMMI achieves
superior performance compared to other interpretation methods, demon-
strating its efficacy in providing rich representations for neurons in med-
ical image analysis. Our experiments on a model trained on NIH chest
X-rays validate the effectiveness of MAMMI, showcasing its potential for
transparent clinical decision-making in the medical domain. The code is
available at https://github.com/ailab-kyunghee/MAMMI.

Keywords: Interpretability · Explainability · Neuron-Concept annota-
tion.

1 Introduction

Recent research has demonstrated considerable progress in employing deep neu-
ral networks (DNNs) within diverse medical domains, highlighting their potential
for aiding disease diagnosis and medical decision-making. Nevertheless, when de-
ploying AI models for real-world usage, it is important for models to provide suf-
ficient justification for their decisions in compliance with the European Union’s
General Data Protection Regulation (GDPR) law [18,21]. This regulation em-
phasizes the importance of transparent decision-making processes. Therefore,
ensuring transparent clinical decisions of AI models requires a comprehensive
understanding of the internal workings of the model [5,22].

To improve understanding of the internal workings of the model (i.e., inter-
pretability), various methods have been proposed [2,12]. Wu et al. investigate
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the concept of neurons in the model by a subjective evaluation from radiolo-
gists. Network Dissection [2] offers a detailed explanation of the model’s internal
mechanisms by automatically identifying concepts for individual neurons lever-
aging pixel-wise segment mask annotated datasets like Broden. Khakzar et al.
proposed Towards Semantic Interpretation (TSI) [11] by applying Network Dis-
section to the medical domain leveraging pixel-wise segment mask annotated
datasets. TSI is better than [25] by reducing the efforts for annotating concepts
for every neuron by medical experts, which increases the annotation cost in pro-
portion to the number of neurons. However it still heavily depends on pixel-wise
annotated datasets, leading to heavy dataset collection costs [1]. It is a signif-
icant drawback, especially in medical domains where pixel-level annotation is
especially expensive.

To address this issue, recent studies in computer vision (CV) domain [1,9,15]
have introduced neuron concept annotation methods that leverage vision-language
models, such as CLIP [16]. These methods utilize separate image datasets (prob-
ing set) and a set of text (concept set), offering a significant advantage in in-
terpreting internal model representations without relying on pixel-wise segment
mask annotated datasets. However, adaptation of the neuron concept annota-
tion methods to the medical field necessitates careful consideration of three crit-
ical factors. Firstly, it is imperative to curate a concept set that incorporates
medical-specific information, ensuring relevance to the domain. Secondly, the
class-imbalanced data distribution prevalent in medical datasets might harm
the performance of neuron concept annotation methods by affecting neuron rep-
resentation selection. Lastly, it needs a vision-language model for the medical
domain to ensure a suitable representation of medical-specific images and terms.

To address these challenges, we present a novel medical neuron concept an-
notation method, named Mask-free Medical Model Interpretation(MAMMI),
which takes into account these key aspects in this study. Comprehensive ex-
periments have been conducted on a model trained on chest X-rays (NIH14).
Experimental results demonstrate that MAMMI achieves superior performance
compared to other methods, showcasing its efficacy in providing rich represen-
tations for neurons in medical image analysis. Our contributions are as follows:

– We proposed a novel medical neuron concept annotation method, MAMMI,
to address the limitations of the previous neuron concept annotation meth-
ods. By leveraging vision-language models, MAMMI stands out as a mask-
free method, eliminating the necessity for pixel-level datasets and thereby
reducing the costs associated with collecting expensive pixel-level data.

– We explore methods for neuron-concept association in the medical field and
design the method by accounting for medical-specific attributes that are
often overlooked. These include factors such as class-imbalanced data distri-
bution, which is particularly prevalent in medical datasets.

– Extensive experiments have been conducted to evaluate the effectiveness of
the MAMMI. MAMMI demonstrated superior performance both qualita-
tively and quantitatively in a medical setting compared to other methods.
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2 Related Work

Concept Activation Vectors: Kim et al. [12] proposed an interpretation
method based on Concept Activation Vectors (CAVs). CAVs are defined as vec-
tors orthogonal to a linear classifier that separate neuron activations between a
positive example set and a negative non-example set for a user-defined concept.
TCAV (Testing with CAVs) measures the sensitivity of the model to all concepts
for a given prediction, allowing an explanation of which concepts the model’s de-
cision is based on. Additionally, it has been demonstrated to be applicable in
the medical domain by reporting results on retinal fundus images [13]. However,
CAVs have limitations on detailed and diverse automatic explanations of the
model’s internal workings.
Network Dissection: Bau et al. [2] proposed Network Dissection, which matches
concepts by measuring the Intersection over Union (IoU) score between pixel-
wise segmentation masks and individual neuron (e.g., convolution filter) feature
maps. Khakzar et al. [11] proposed TSI and demonstrated the utility of detecting
concepts within neurons of a thoracic disease diagnosis model, showcasing its ef-
fectiveness in the medical domain. However, the aforementioned methods require
pixel-wise annotation due to their dependence on an image-concept-matched
dataset like Broden [2] or NIH14 [23] with bounding boxes, which incurs expen-
sive pixel-level annotation costs for dataset collection.
Vison-Language Model-based Methods: Vision-language models, such as
CLIP [16] model, have been utilized for matching neuron concepts without the
help of pixel-wise annotated datasets. Examples include FALCON [9], CLIP Dis-
sect [15], and WWW [1]. FALCON [9] selects high-activated examples and finds
similar captions in a large-scale caption dataset [19]. This approach relies on the
assumption that there are captions representing neurons, which requires a di-
verse large-scale caption dataset, including various captions. However, building
such a dataset with diverse captions, especially in the medical domain where
specialized knowledge is required, can be challenging. CLIP Dissect [15] matches
concepts with the concept activation matrix, calculated based on the inner prod-
uct of CLIP image feature and text features. And the neuron activations of the
probing set. WWW [1] matches concepts by calculating the adaptive cosine simi-
larity in CLIP space between a fixed number of high-activated examples for each
neuron and the concept set.

3 Method

There are important consideration points for designing neuron concept anno-
tation in the medical domain. For instance, concept sets consisting of general
words may not properly represent the concepts that the model learns from the
medical datasets. In section 3.1, we introduce a way for constructing a concept
set considering medical-specific information. Also, in the medical dataset, the
number of samples between classes can be different (i.e., class imbalance), which
can be another challenging point for neuron concept annotation, in particular,
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Fig. 1. Overview of neuron concept annotation method of MAMMI. The
representative images of neurons for concept annotation are selected by images with
activation values over the neuron-wise computed adaptive threshold from the probing
data. The concept set is constructed by extracting nouns from the medical report.
The representative images and the text concept set are projected into the CLIP model
embedding space for concept identification by the adaptive concept matching module.

for representative example selection. In section 3.2, we propose adaptive neuron
representative image selection for considering class-imbalance distribution data
prevalent in medical datasets. In section 3.3, we provide a description of the
overall flow of MAMMI, incorporating the introduced elements.

3.1 Constructing a Medical Concept Set

Our approach involves utilizing a dataset that has medical reports related to the
domain of the trained target model. Leveraging datasets that have target domain
image-related reports gives great advantages in obtaining suitable concepts for
interpreting the target model. We extracted nouns in medical reports of the
target domain to extract meaningful concepts for model interpretation.

3.2 Adaptive Neuron Representative Image Selection

The class imbalance is one of the prevalent attributes of medical datasets. There-
fore, we propose an adaptive neuron representative image selection for each neu-
ron representation. Let neuron activations of target model l − th layer i − th
neuron regarding concept set images denoted as A(l,i). The adaptive threshold
(τ) for neuron representative images selection is computed as follows:

τ
(l,i)
example = max(A(l,i))− (1− α) · (max(A(l,i))−min(A(l,i))), (1)

where α denotes the hyper-parameter for neuron representation selection sen-
sitivity. In Eq. 1, for calculating the adaptation threshold of the i -th neuron
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in the l -th layer, we leverage the gap between the maximum sample activation
(max(A(l,i))) and minimum sample activation (min(A(l,i))). Since each neuron
has different activation patterns and ranges, leveraging the gap between maxi-
mum and minimum activation allows adaptive neurons representative image se-
lection to consider the range of each neuron activation. By adjusting the hyper-
parameter α, we can select suitable examples for neuron representation while
considering the data imbalance. We select l− th layer i− th neuron representa-
tive images Imgs(l,i) = {A(l,i)

k > τ
(l,i)
example, (k = 1, 2, ..., p)} where p denotes the

number of images in probing set.

3.3 Overview of MAsk-free Medical Model Interpretation: MAMMI

In this section, we provide an overview of the overall flow of MAMMI for med-
ical neuron concept annotation. The concept identification follows the concept
discovery module proposed in [1], and the overall flow is illustrated in Figure 1.

From the obtained images and concepts, the following steps are proceed for
concept identification: First, we calculate CLIP text features of concepts as T =
[t1, t2, ..., tm] and CLIP visual features of a neuron to annotate (i.e., l-th layer
i-th neuron) as V (l,i) = [v

(l,i)
1 , v

(l,i)
2 , ..., v

(l,i)
n ] from Imgs(l,i). Here, m denotes the

total number of concepts, and n represents the number of selected representing
images of a neuron to annotate. Then, we measure the adaptive cosine similarity
of the calculated features to compute the concept score S. The concept score of
j-th concept regarding l-th layer i-th neuron s

(l,i)
j is calculated as follows:

s
(l,i)
j =

1

n

n∑
o=1

{
cos(v(l,i)o , tj)− cos(v(l,i)o , ttem)

}
, (2)

where ttem represents the CLIP text embedding of the base template. If the cal-
culated concept score s

(l,i)
j is greater than the threshold θconcept, j-th concept is

annotated as the concept for the corresponding neuron. The threshold θconcept is
calculated as θconcept = β×max(s(l,i)). β denotes the ratio of selecting concepts.
We used the same hyperparameter (β = 0.95) as in [1].

4 Experiments

4.1 Experimental Settings

The target model for interpretation is a DenseNet121 [6] architecture which is
pre-trained with the MoCo training method and fine-tuned using the chest X-ray
dataset [26]. Additionally, for qualitative results, we employed ChestX-det [14]
with bounding box annotations. For quantitative evaluation, we performed it
using the final layer neuron concepts and class labels as introduced in [15,1].
We calculated the similarity between the class label feature encoded by CLIP
(ViT-B/16) [17] and mpnet [20] and the neuron concepts. The F1-score indicates
the exactness and flexibility of neuron concepts, while the hit-rate measures the
extent to which neuron concepts correctly predict class labels.
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Table 1. Ablation study on the concept set selection of MAMMI.

Dconcept
# of

concepts
Cosine Similarity F1-score Hit-rateCLIP mpnet

20K [15] 20K 0.7749±0.016 0.1045±0.016 0.000 0.000
Wordnet nouns[1] 80K 0.7253±0.022 0.1542±0.014 0.000 0.000

MIMICNouns 1361 0.8599±0.024 0.5290±0.084 0.2619±0.113 0.2857±0.121

Table 2. Ablation on the adaptive neuron
representative image selection.

Example
Selection

Cosine Similarity Penultimate
CLIP mpnet Unique concept

w/o Adaptive 0.8495±0.026 0.5107±0.085 65
Adaptive 0.8599±0.024 0.5290±0.084 96

Table 3. Comparison of medical CLIP
models in MAMMI.

CLIP Model Cosine Similarity
CLIP mpnet

CXR-RePaIR [3] 0.8334±0.018 0.3716±0.070

MedKLIP [24] 0.7704±0.014 0.1780±0.022

MedCLIP [24] 0.8599±0.024 0.5290±0.084

4.2 Evaluation of Our Method

Ablation study on the Concept Set Selection of MAMMI: To evalu-
ate the performance of the concept set considering medical-specific information,
we compared various concept sets obtained from other sources. In this exper-
iment, we interpreted the target model fine-tuned on the NIH Chest X-ray14
(NIH14) [23]. We collect concept set from MIMIC-CXR reports [8] by extracting
nouns from the datasets (i.e.,MIMICNouns). As a control group for MIMICNouns,
we compared two concept sets proposed in [15] (20k) and proposed in [4,1] (80k)
from the CV domain.

In Table 1, the cosine similarity scores of the concept set from 20k and 80k
sets have significantly decreased compared to the concept set of our method.
Additionally, the F1 Score and hit rate, which evaluates whether annotated
concepts match with labels or not, are both zero. This result indicates that by
building a concept set with medical-specific information (MIMICNouns), the
model interpretability can be significantly improved.
Ablation Study on Adaptive Neuron Representative Image Selection:
In Table 2, we present the results of an ablation study conducted under the
same conditions for our proposed adaptive neuron representative image selec-
tion method and select a fixed number of examples (i.e., w/o adaptive neuron
representative image selection). The parameter α used in our adaptive neuron
representative image selection is set to 93%, We discovered an interesting find-
ing when comparing the example distribution of adaptive neuron representative
image selection with the data distribution of the probing set (NIH14). Figure 2
shows the proportion of class-wise data distribution in the probing set and the
number of selected examples with and without adaptive neuron representative
image selection in each neuron. Compared to the method without adaptive se-
lection, the distribution of adaptive neuron representative image selection shows
a similar distribution to the train data distribution. This result indicates that
by leveraging neuron representative image selection, MAMMI can select suitable
examples with less noisy representing images. As a result, using adaptive neuron
representative image selection showed marginal performance improvement.
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Fig. 2. The data distribution of adaptive neuron representative image selection com-
pared to the probing set. (a) Ablation study on the value of parameter α. (b) Distri-
bution regarding the number of selected representative images of neurons in the final
layer and train set class distribution.

Table 4. Quantitative comparison with mask-based concept annotation method.

Method Dconcpet
Cosine Similarity F1-score Hit-rateCLIP mpnet

TSI [11] NIH14 [23]+COVID-CXR [7] 0.7872±0.014 0.2554±0.039 0 0
Ours MIMICNouns 0.8599±0.024 0.5290±0.084 0.2619±0.113 0.2857±0.121

Ablation Study on Medical CLIP Model Selection: For better annotations
for the neuron concepts of the target model, we conducted an ablation study by
selecting the CLIP model trained on the chest X-ray dataset. We compared
three CLIP-based models, CXR-RePaIR [3], MedKLIP [24], and MedCLIP [24].
Results are listed in Table 3. Our experimental results showed that MedCLIP [24]
outperforms compared to other competitive baselines.

4.3 Performance Evaluation with Other Methods

Comparison with Mask-based Method: Table 4 presents a performance
comparison with the TSI [11], which utilizes mask annotation in the medi-
cal domain. TSI used a concept set that consists of COVID-19 segmentation
data (COVID-CXR) [7] and class labels from NIH Chest X-ray14 (NIH14) [23].
MAMMI exhibited superior performance across all metrics, highlighting its effec-
tiveness. Notably, TSI failed to accurately identify neuron concepts, as observed
from F1-scores and Hit-rate scores. For qualitative comparison, we display two
penultimate layer neurons that are important for identifying ground truth la-
bels with their respective activation regions. Qualitative results in Figure 3,
MAMMI accurately identifying neuron concepts, even at the penultimate layer,
while TSI [11] failed to identify proper concepts.
Comparison with Vision-Language Model-based Methods: Table 5 pro-
vides a performance comparison by implementing Vision-Language model-based
methods from the CV domain into the medical setting. WWW is not explic-
itly mentioned as it serves as the baseline for MAMMI. In the medical setting,
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Table 5. Quantitative comparison with other concept annotation methods.

Method D_concept Cosine Similarity F1-score Hit-rateCLIP mpnet
FALCONM MIMIC report [8] 0.8054±0.012 0.2420±0.031 0.0635±0.027 0.2857±0.121

CLIP DissectM MIMICNouns 0.8205±0.024 0.3700±0.083 0.0714±0.069 0.0714±0.069

Ours MIMICNouns 0.8599±0.024 0.5290±0.084 0.2619±0.113 0.2857±0.121

we replace the caption dataset of FALCON [9] with MIMIC-CXR medical re-
ports [8] for this experiment. Additionally, to ensure the identification of con-
cepts in every neuron, the example selection threshold was modified to 0.25.
CLIP Dissect [15] also adjusted into medical settings with the medical concept
set(i.e.,MIMICNouns) with MedCLIP[24]. Moreover, performance was evaluated
using the top-1 neuron concept, ensuring that neuron concepts were annotated
in every neuron. As shown in Table 5, MAMMI achieved high scores across all
metrics compared to other competitive baselines. Also, qualitative results are
presented in Figure 3. As shown in the figure, MAMMI accurately identified
concepts even at the penultimate layer, while other baselines [9,15] failed to
identify proper concepts.

CLIP Dissect : ReticularOurs : Consolidation

FALCON    : Pleural    

                    Effusion 

                    Increased

Ground Truth:

Consolidation

TSI  : 

Cardiomediastinum

CLIP Dissect : SubsegmentalOurs : Atelectasis

FALCON        : Pulmonary

                        Edema

                        Bilateral

TSI   : 

Cardiomediastinum

Ground Truth:

Atelectasis

Neuron #626

Activation map

Neuron #751

Activation map

Fig. 3. Qualitative result on the penultimate layer. We display two penultimate layer
neurons selected by Shapley Value [10,1] as the most important penultimate neurons
for identifying the respective ground truth label in the image.

5 Conclusion

In this study, we introduce a novel approach for interpreting medical vision
models via neuron concept association named MAMMI, specifically tailored for
the medical domain. Recognizing the challenges associated with constructing
new datasets, we devised a concept set considering medical-specific information.
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Also, we employed an adaptive neuron representative image selection method
to overcome the imbalanced data distribution of common attributes in medical
datasets. Our extensive experiments demonstrated that MAMMI outperforms
other approaches in annotating a wide variety of concepts to neurons in medical
models. Furthermore, our method addresses a limitation of existing approaches,
such as TSI, which requires expensive mask-annotated datasets.
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