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Abstract. Accurate and robust classification of diseases is important
for proper diagnosis and treatment. However, medical datasets often
face challenges related to limited sample sizes and inherent imbalanced
distributions, due to difficulties in data collection and variations in dis-
ease prevalence across different types. In this paper, we introduce an
Iterative Online Image Synthesis (IOIS) framework to address the class
imbalance problem in medical image classification. Our framework in-
corporates two key modules, namely Online Image Synthesis (OIS) and
Accuracy Adaptive Sampling (AAS), which collectively target the im-
balance classification issue at both the instance level and the class level.
The OIS module alleviates the data insufficiency problem by gener-
ating representative samples tailored for online training of the classi-
fier. On the other hand, the AAS module dynamically balances the
synthesized samples among various classes, targeting those with low
training accuracy. To evaluate the effectiveness of our proposed method
in addressing imbalanced classification, we conduct experiments on the
HAM10000 and APTOS datasets. The results obtained demonstrate
the superiority of our approach over state-of-the-art methods as well
as the effectiveness of each component. The source code is available at
https://github.com/ustlsh/IOIS_imbalance.
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1 Introduction

Image classification is an essential task for medical image analysis and has wide
applications in medical datasets, such as distinguishing benign or malignant
tumors [4,16], grading specific diseases [26,27], and diagnosing various diseases [1,
13]. However, medical datasets often encounter challenges related to insufficient
sample sizes or inherent imbalanced distributions, which can be attributed to
difficulties in data collection and variations in disease prevalence across different
types [2, 15]. These challenges can lead to poor generalization and introduce
biases, compromising the performance of deep learning models.

To address the challenges of class imbalance, existing solutions can be cat-
egorized into three main groups: re-weighting, re-sampling, and data synthesis.
† Equal contribution; � corresponding author.
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Re-weighting methods [5, 14, 22, 23] aim to balance the loss between the major-
ity and minority classes. An example is Focal Loss [14], which adjusts hyper-
parameters to increase the loss for minority classes while decreasing it for ma-
jority classes. This approach encourages the model to focus more on challenging
samples. On the other hand, re-sampling and data synthesis methods directly
modify the distributions of the original dataset. Re-sampling methods [8,17,19]
involve oversampling or undersampling techniques. Oversampling increases the
sampling probability of minority classes, whereas undersampling decreases the
probability of majority classes. Data synthesis methods [3,18,21,28] utilize gen-
erative models such as generative adversarial networks (GANs) to generate new
images for minority classes. These generated samples help balance the sample
size across classes, thereby addressing the class imbalance issue.

Recently, the diffusion model (DM) has emerged as a potent generative model
that exhibits superior performance compared to GANs [6, 20]. Building on the
success of DM, various methods have demonstrated the potential of DM in im-
proving medical image classification by synthesizing training samples [29, 30],
which is particularly useful for medical image classification tasks with limited
training data. However, existing methods typically generate images indepen-
dently before commencing the training process, keeping the training images un-
changed throughout. This separated pipeline may lead to overfitting due to the
lack of synthetic diversity or model collapse problem [10]. Moreover, the portion
of synthetic images for each class is often determined manually in these meth-
ods, which may not align with the dynamic requirements of the classifier for each
class during the training process [24].

To address aforementioned issues, in this paper, we propose a novel Iterative
Online Image Synthesis framework, named IOIS, to address the class imbalance
problem in medical image classification. The main contributions of our work are
summarized as follows: 1) At the instance level, we introduce an Online Im-
age Synthesis (OIS) module to alleviate the data insufficient problem. For each
epoch, we employ the gradient of the training classifier as guidance for the dif-
fusion model to generate samples tailored for online training. As the classifier
develops during training, the synthesized images become more representative
of their respective classes, which in turn benefits the online training process
iteratively. 2) At the class level, we propose an Accuracy Adaptive Sampling
(AAS) module to dynamically balance the synthesized samples among various
classes. AAS aims to generate more samples for classes with low training accu-
racy, addressing the class imbalance issue in a targeted manner. 3) We conduct
experiments on two public medical image datasets to evaluate the effectiveness of
our method. The results demonstrate the superiority of our approach compared
to state-of-the-art methods, as well as the effectiveness of each component.

2 Methodology

As depicted in Fig. 1, the proposed Iterative Online Image Synthesis (IOIS)
framework comprises three key components: a classifier, the Online Image Syn-
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Fig. 1: The framework of the proposed IOIS. It comprises three components,
which are iteratively performed: training classifier, determining class distribution
of synthetic images via AAS, and synthesizing images via OIS.

thesis (OIS) module, and the Accuracy Adaptive Sampling (AAS) module. Firstly,
a conventional classifier training process is conducted, where we adopt ResNet-
50 as the backbone architecture. Then, the OIS module is introduced to gener-
ate augmented data tailored to the classifier during the training process. Addi-
tionally, the AAS module is proposed to update the distribution of synthesized
images in the diffusion model based on the feedback from the classifier’s perfor-
mance. In the following, we will detail each component.

2.1 Diffusion Model

Diffusion model (DM) [7] is a probabilistic generative model that aims to learn
the probability distribution of a given dataset. It defines the forward process to
gradually add Gaussian noise to a clean image and the reverse process to recover
the noised image step by step.

In the forward process, we gradually add Gaussian noise to an image sam-
pled from a data distribution x0 ∼ q(x) in T steps to obtain noisy samples
{x1, ...,xt, ...,xT }, where t ∈ {1, ..., T}. We use q(xt|xt−1) to represent forward
process at t-th step,

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where βt ∈ (0, 1) denotes the variance which controls the step size for t-th step,
and I is the identity matrix. In the reverse process, we train a model ϵθ to
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predict the noise added on xt. Following [7], the simplified training objective is
to minimize the mean square error loss:

Ldiff = Et,x0,ϵ[∥ϵ− ϵθ(xt, t)∥2]. (2)

In the inference stage, we start from a randomly sampled pure Gaussian noise
xT and remove one step noise by

xt−1 =
1

√
αt

(
xt −

1− αt√
1− αt

ϵθ(xt, t)

)
+ σtz, z ∼ N (0, I). (3)

After T steps calculation, we can finally obtain x0 from xT .
This label-free pre-training approach presents promising prospects, as it al-

lows us to harness the vast reserves of unlabeled data and facilitates the uti-
lization of a wide array of pre-trained diffusion models, thereby enhancing the
scalability of our approach. Once the diffusion model is pre-trained, we freeze
the parameters of the DM and only perform inference to generate augmented
data for the classifier training. The class distribution of the synthetic images is
dynamically determined by the proposed OIS and AAS modules, which we will
describe in the following sections.

2.2 Online Image Synthesis with Classifier Guidance

In contrast to existing methods that solely rely on a pre-trained diffusion model
to generate augmented data for training the classifier, we propose a novel module
called online image synthesis (OIS). OIS addresses the adaptivity limitations in
the classifier by producing augmented data specifically tailored to the classifier
during the training process. The key idea of the OIS module is to utilize the
development of the classifier to synthesize more representative images for each
class. Specifically, during the classifier training process, instead of solely using
the real images to guide the DM inference as in Eq. (3), we further incorporate
the classifier’s feedback by using the classifier’s gradient of xt from the output
of diffusion model:

ϵ̂ = ϵθ(xt, t)− s · ∇xt
log pϕ(y|xt). (4)

Then, xt−1 is derived by replace the ϵθ with the updated value ϵ̂ in Eq. (3).
With the iteration of several steps, the intermediate image xt becomes close to
the distribution of class y as the decreasing of the noise level. In the end, the
recovered image x0 belongs to class y.

2.3 Accuracy Adaptive Sampling for Imbalanced Data

To achieve a better balance of samples among different classes, we propose an
Accuracy Adaptive Sampling (AAS) module designed to dynamically determine
the class distributions of synthetic images based on the accuracy of each class.
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Algorithm 1: Framework of IOIS, given a diffusion model ϵθ, and
gradient scale s.

Input: Real training images xre ∼ Dreal, random Gaussian noise
xT ∼ N (0, I)

Output: Labels of images in the test set

Initialize the parameters of classifier ϕ with pre-trained ImageNet weights;
for each epoch do

Update ϕ;
Compute accuracy for each class on the training set [acc1,...,accc] ;
Compute the synthetic numbers for each class [k1, ..., kc] by Eq. (5);
Sample K images with diffusion model ϵθ and the classifier ϕ;
Merge K synthesized images and the real training images as the training
set for the next epoch.

Specifically, for each epoch of classifier training, we compute the training accu-
racy for each class, resulting in a vector [acc1, acc2, ..., accc], where c represents
the number of classes. Based on the training accuracy, we calculate the syn-
thetic number, denoted as ki, for each class i. The value of ki is determined by
the following equation:

[k1, k2, ..., kc] = Softmax([1− acc1, 1− acc2, ..., 1− accc]) ∗K, (5)

where K denotes the total size of synthetic images for all the classes. The ob-
tained number ki for class i reflects the performance, that is the lower accuracy
of the class, the more samples will be generated in the third step. As a result,
the classes with lower accuracy obtain more training samples in the next epoch,
which can improve the following performance. Algorithm 1 outlines the whole
pipeline of our proposed approach.

3 Experiments

3.1 Datasets and Evaluation Metrics

We evaluate our method on two public medical image datasets with imbalanced
class distributions. The HAM10000 dataset [25] consists of 10,015 dermato-
scopic images from 7 skin lesion categories. We follow the data splitting settings
in [11], where the proportions of the training set, the validation set, and the
test set are 70%, 10%, and 20%, respectively. The APTOS dataset [9] includes
3,662 retinal fundus images which are divided into five categories. Similarly, we
split 70%, 10%, and 20% of the dataset as training, validation, and test set. The
imbalanced ratios [12] of HAM10000 and APTOS are 59 and 9, respectively. We
leverage three evaluation metrics for imbalanced classification which are Macro-
F1, Balanced Accuracy (B-ACC), and Matthew’s correlation coefficient (MCC).
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Table 1: Comparisons with state-of-the-art methods on HAM10000 and APTOS
datasets. Results of other methods are re-implemented under the same setting.

Method HAM10000 Dataset APTOS Dataset
Macro-F1 B-ACC MCC Macro-F1 B-ACC MCC

CE Loss 77.78 76.78 76.11 69.05 67.91 76.79
Focal Loss [14] 77.72 77.54 75.04 70.22 67.82 77.47

CB-Focal [5] 77.96 79.90 75.31 70.54 70.36 77.19
Sqrt-RS [19] 78.55 79.44 76.13 70.02 68.61 77.68

PG-RS [8] 79.09 78.45 77.78 70.77 69.77 76.98
Cell-GAN [21] 78.89 79.43 77.74 71.10 70.26 78.86

StyleGAN2-ADA [3] 80.03 80.14 78.82 72.48 71.05 79.26

Ours (+offline) 80.09 79.97 78.79 72.79 70.86 79.95
Ours (+OIS) 80.89 80.20 79.03 72.72 71.08 80.17

Ours (+OIS, AAS) 81.97 81.50 80.64 73.02 72.27 80.76

3.2 Impelementation Details

We utilize ResNet-50 as the backbone architecture and initialize the parameters
with the pre-trained model on the ImageNet dataset. To train the model, we set
the batch size to 32, and resize the input images to 224px × 224px. We apply
the standard augmentations including random cropping, random rotation (-30
degrees to +30 degrees), and horizontal flipping. We choose the SGD optimizer
with a 0.0125 initial learning rate for 200 epochs of training. We decay the
learning rate by 0.1 times at 60, 120, and 180 epochs. To prevent overfitting, we
select the test model based on the maximum Macro-F1 on the validation set.

3.3 Comparisons with State-of-the-art Methods

We conducted a comprehensive comparison of our proposed method with several
state-of-the-art approaches on the HAM10000 and APTOS datasets. To ensure a
fair evaluation, we re-implemented the competing methods using the same back-
bone architecture and data augmentation strategies. The comparison results are
summarized in Table 1. The compared methods are specifically designed to ad-
dress the issue of imbalanced classification, including re-weighting techniques
(Focal Loss [14] and CB-Focal [5]), re-sampling approaches (Sqrt-RS [19] and
PG-RS [8]), and GAN-based synthetic methods (Cell-GAN [21] and StyleGAN2-
ADA [3]). Compared to the baseline method (CE Loss), which employs cross-
entropy loss for training, other methods demonstrate improvements across all
three metrics in general. However, the re-weighting and re-sampling techniques
achieve these enhancements for minority classes at the expense of accuracy for
majority classes. For instance, on the HAM10000 dataset, the CB-Focal method
obtains a 3.12% improvement in B-ACC while experiencing a 0.80% decline in
MCC relative to CE Loss. In contrast, the GAN-based synthetic methods gener-
ally enhance accuracy for both majority and minority classes. Nonetheless, the
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improvements are insufficient for certain minority classes due to the inadequate
number of synthetic samples generated for these categories. As evidenced by the
experimental results in Table 1, the re-weighting and re-sampling methods are
characterized by lower Macro-F1 and MCC scores, while the GAN-based syn-
thetic methods exhibit reduced B-ACC values. This observation suggests that
the predictions generated by these methods tend to yield higher rates of false
positives or false negatives. Our proposed method, which iteratively incorpo-
rates online image synthesis and accuracy adaptive sampling, shows significant
improvements for minority classes while maintaining high accuracy for major-
ity classes. Specifically, our approach outperforms competing methods across all
evaluation metrics. Specifically, our method achieves a 4.53% and 3.97% increase
in MCC compared to CE Loss on HAM10000 and APTOS, respectively.

3.4 Ablation Study

To evaluate the effectiveness of the proposed online image synthesis (OIS) and
accuracy adaptive sampling (AAS), we conducted an ablation study on HAM-
10000 and APTOS datasets. We compared three models, one with offline image
synthesis strategy, one with OIS module, and one with both OIS and AAS.
The results of these models are presented in the last three rows of Table 1. For
the experiment with the offline setting, we employed the pre-trained diffusion
model and classifier to generate images for each class in advance and trained
the model with the real training set and the same synthetic images under the
same settings. Compared to the results of the baseline method (CE Loss), our
model with offline synthesis method obtains improvements of 2.31%, 3.19%, and
2.68% in Macro-F1, B-ACC, and MCC on the HAM10000 dataset, respectively.
Moreover, it achieves a little enhancement than Cell-GAN and StyleGAN2-ADA,
which indicates the outperformance of the diffusion models over GANs. For the
experiments with the OIS strategy only, we sampled images per epoch with the
same size for each class. Compared to the offline method, the online module
provides 0.24% and 0.22% enhancement of MCC for HAM10000 and APTOS
datasets. To further assess the effectiveness of the AAS strategy, we applied it and
observed 1.61% and 0.59% improvement of MCC for two datasets, respectively.

3.5 Discussions

Class-wise comparison. To evaluate the performance of different methods on
each class within the HAM10000 dataset, we computed the relative variations
in accuracy for all seven classes in comparison to the CE Loss. The methods
considered for comparison are Focal Loss, Sqrt-RS, StyleGAN2-ADA, and our
proposed approach. We arranged the seven categories in descending order based
on their class sizes, and the results are depicted in Fig. 2. Compared to the
CE Loss, Focal Loss exhibits a substantial decline in accuracy for major classes
(MEL, BKL, and BCC), despite achieving significant improvements for some
minor classes (AK and DR). Furthermore, the Sqrt-RS and StyleGAN2-ADA
methods demonstrate suboptimal performance for the BKL and BCC classes. In
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Fig. 3: Visualization examples of synthesized images and real images.

contrast, our proposed approach consistently exhibits enhancements in accuracy
for both major and minor classes when compared to the other methods.

Visualization of synthetic images. To validate the quality of the synthesized
images, we present several visual examples of the generated images in Fig. 3 and
identify the most similar images within the real dataset for each synthetic im-
age. Upon examination, it is evident that the generated samples exhibit diversity
while maintaining similarity to the real images. For instance, the first column
of images displays a consistent shape, but with varying background illumina-
tion levels. The third column of images features a comparable texture, yet with
diverse lesion shapes.

4 Conclusion

In conclusion, we present a novel approach to tackle the issue of imbalanced
classification in medical image analysis. Building on the superior performance
of the diffusion model in synthesizing high-quality images, we integrate online
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image synthesis and accuracy adaptive sampling to iteratively augment train-
ing samples that are tailored to the classifier. Our method demonstrates supe-
rior performance when compared to several state-of-the-art approaches on the
HAM10000 and APTOS datasets. Future research may explore the application
of our approach to other medical imaging tasks and the development of more
advanced techniques for image synthesis and sampling.
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