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Abstract. The generative self-supervised learning strategy exhibits re-
markable learning representational capabilities. However, there is limited
attention to end-to-end pre-training methods based on a hybrid architec-
ture of CNN and Transformer, which can learn strong local and global
representations simultaneously. To address this issue, we propose a gen-
erative pre-training strategy called Hybrid Sparse masKing (HySparK)
based on masked image modeling and apply it to large-scale pre-training
on medical images. First, we perform a bottom-up 3D hybrid masking
strategy on the encoder to keep consistency masking. Then we utilize
sparse convolution for the top CNNs and encode unmasked patches for
the bottom vision Transformers. Second, we employ a simple hierar-
chical decoder with skip-connections to achieve dense multi-scale fea-
ture reconstruction. Third, we implement our pre-training method on
a collection of multiple large-scale 3D medical imaging datasets. Ex-
tensive experiments indicate that our proposed pre-training strategy
demonstrates robust transfer-ability in supervised downstream tasks and
sheds light on HySparK’s promising prospects. The code is available at
https://github.com/FengheTan9/HySparK.

Keywords: Self-supervised learning · Masked image modeling · Hybrid
architecture of CNN and Transformer · Medical images pre-training.

1 Introduction

Due to the scarcity of time-consuming and labor-intensive labeled medical im-
ages, pre-training on large amounts of easy-collected unlabeled medical im-
ages by self-supervised learning approaches to learn representations for down-
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stream tasks is a promising approach in medical image analysis (MIA) [1]. Self-
supervised learning approaches can be divided into two families: Contrastive
methods [2,3,4,5,6,7] and Generative methods [8,9,10,11,12,13,14,15,16,17], where
the latter group demonstrates better transferability to downstream tasks [13,17]
such as segmentation. Representative generative methods like MAE [13] pre-train
the Vision Transformers (ViTs) [25] in "BERT-style" [8] by dropping masked
non-overlapping patches and re-predicting the masked ones.

From the architecture perspective, the inductive bias of CNN [24] and the
long-range representation ability of Transformer [25] play pivotal roles in achiev-
ing excellent performance in visual tasks. However, the local limitation of CNNs
constrains their ability to overcome performance bottlenecks further. Addition-
ally, due to the scarcity and sparsity of medical images, the limited inductive
biases and data-hungry nature of ViTs [25] make it challenging to effectively
transfer to downstream tasks [18,30]. To integrate the advantages of both worlds
at the infrastructure design level, a hybrid architecture leverages the induc-
tive bias of CNNs and the global context learning capabilities of ViTs, showing
great potential to break-through the performance bottlenecks on medical im-
ages [20,21,22,23].

Based on this advancement, a natural insight arises: Is it possible to simulta-
neously pre-train CNN and ViT with large-scale unlabeled medical images, which
fully capitalize on the advantages of the hybrid model to unleash its potential?
Despite MAE [13] is able to pre-train ViTs [25], for CNNs, executing sliding
windows can erode the masked regions, leading to a vanishing mask pattern and
causing a pixel distribution shift issue [17]. Luckily, SparK [17] successfully ex-
tends the masked image modeling to CNNs by deploying sparse convolution [39]
to calculate only unmasked positions and skip the masked pixels.

Nevertheless, extending the success of the "BERT-style" masked imaging
modeling pre-training strategy from single to hybrid architectures remains a chal-
lenging yet unrealized problem. Two main challenges are hindering the end-to-
end implementation of pre-training hybrid architectures: (i) Masking consis-
tency. For a single architecture, it is easy to maintain masking consistency [11,12]
[13,14,16,17]. However, for hybrid architectures, due to the inconsistent masking
strategies in both worlds, the direct combination still causes the "pixel distri-
bution shift" and "mask pattern vanishing" issues [17]. (ii) Multi-scale rep-
resentation learning is necessary. In medical imaging, a series of u-shape
networks such as U-Net [24] demonstrate the importance of multi-scale and skip-
connections in improving model performance. However, most current algorithms
only learn representations at a single scale [13,14], neglecting the performance
advantages brought by multi-scale architectures, which is crucial in MIA tasks.
Although SparK [17] takes this issue into account, it uses a simple fusion method
(only skip-addition) and ignores important pattern adaptation in downstream
tasks (success of skip-connections in medical downstream tasks [24,26,29,30]),
which widen the gap from pre-training to downstream transferring.

In this work, we address the above issues and propose a Hybrid Sparse
masKing (HySparK) strategy for self-supervised learning in CNN and Trans-
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former hybrid architectures. Following the success of hybrid architectures in
MIA tasks [20,21,22,23], we use CNN as the top encoder to extract local repre-
sentations and Transformer as the bottom for global features. Moreover, skip-
connections are introduced to integrate multi-scale representations. To address
masking consistency, we perform bottom-up masking. Specifically, we ini-
tialize the masks based on the patch division in the bottom ViT layer, which are
then mapped to the upper CNN layers with different scales. Then, we use sparse
convolution in CNN and drop masked patches in Transformer to avoid calculat-
ing mask regions. This novel design ensures the consistency of mask mapping
between different layers in the hierarchical CNN and ViT, which prevents the
data distribution shift problem [17] in the hybrid encoder.

In the decoding stage, to leverage the advantage of skip-connections men-
tioned in issue (ii), we construct a simple hierarchical decoder. For the skip-
connections (concat and fuse), we fill the mask embeddings into all empty posi-
tions of multi-scale features. Finally, we reconstruct the masked pixels. To our
knowledge, HySparK is the first successful generative-based 3D hybrid archi-
tecture method for self-supervised learning, applied to large-scale 3D CT med-
ical image pre-training. Similar to SparK [17], HySparK is a general method
that does not restrict the specific hybrid encoder (e.g. specific CNN or Trans-
former) to pre-train. In this paper, we utilize the representative CNN network
in the medical imaging analysis, modern MedNeXt [26], as the top CNN. For
the bottom Transformer, we employ the standard ViT [25]. Across multiple
segmentation downstream tasks, HySparK outperforms state-of-the-art medi-
cal self-supervised pre-training methods and single-architecture-based masking
approaches like MAE [13]. Our primary contributions are as follows:

1. We propose a generative self-supervised learning method to pre-train a hy-
brid architecture, which unleashes its strengths to integrate both local and
global representations. We are the first to pre-train the hybrid architecture
in an end-to-end fashion.

2. We design the bottom-up 3D hybrid masking to keep the consistency of
mask modeling and data distribution across different architectures.

3. We pre-train a strong hybrid vision encoder using HySparK on large-scale
CT medical image datasets (6.8K CT scans in total). Extensive experiments
on downstream tasks demonstrate the effectiveness and potential of HyS-
parK in its transferability.

2 Approach

As shown in Fig. 1, our proposed HySparK framework aims to mask a portion
of the image through hybrid masking and pre-train the encoder by reconstruct-
ing the masked patches. The HySparK framework comprises two stages: the
CNN stage and the Transformer stage. Firstly, the bottom-up sparse masking is
performed in the encoder (Section 2.1), where hierarchical 3D encoding is con-
ducted in the upper CNN stage, while patch-based 3D encoding takes place in
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Hierarchical 3D Encoding

Patch-based 3D EncodingTransformer Stage
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Skip-connection with filling the mask
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Fig. 1. Hybrid Sparse masKing (HySparK). The hybrid architecture comprises a CNN
at the top (yellow) and a Transformer at the bottom (blue). We initiate the masking
strategy at the junction between the CNN and Transformer and execute bottom-up
mask modeling. The initialization unmasking patch is white, the bottom-up mapping
unmasking patch is green and the masking position is black.

the bottom Transformer stage. Secondly, hierarchical 3D decoding is conducted
using a hierarchical decoder with skip-connections (Section 2.2) to learn multi-
scale representations. Finally, we describe the pre-train optimization objectives
of HySparK (Section 2.3).

2.1 Hybrid masking

We perform hybrid masking in a bottom-up manner. Specifically, we divide
the encoder into a top-level N -stage CNN encoder [E cnn

1∼N ] (e.g., N = 4 stages
ResNet-style [27] or ConvNeXt-style [28] encoder) and a bottom-level ViT en-
coder E tr. We initialize sparse mask Mn ∈ R

H
n2 × W

n2 × D
n2 at the junction of the

two architectures (i.e. initializing masking at the output of the last CNN layer,
before ViT). To maintain consistency in masking across different architectures,
we ensure that both architectures adhere to the junction-initialized masking.
Hierarchical 3D encoding in CNN stage. Since the masking is initialized
at the last layer of the CNN, we upsample the initialized Mn sparsely backward
to different CNN stages, generating a set of mask [M1∼n−1] at different scales
with the same rules from Mn. Subsequently, we utilize 3D sparse convolutions to
generate different scales sparse features [S1∼n] with masking [M1∼n] and feature
maps [f cnn

1∼n]:

SparseConv(f cnn
i ,Mi) → Si, ∀i ∈ {1, 2, ..., N}. (1)

Patch-based 3D encoding in Transformer stage. As the bottom encoder is
a standard ViT, learning only unmasked patches. We divide the features obtained
from the last layer output of the CNN into patches with position embeddings.
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Subsequently, following the initialized masking rules, we remove the masked
patches and only utilize the tokens T without masking:

Patchify(Sn,Mn) → T. (2)

2.2 Hierarchical decoding with skip connections

In decoding stage, we introduce a simple cascaded decoder comprising N−1 up-
sampling blocks {Bup

1 , Bup
2 , ..., Bup

n−1} and N−1 fusion blocks {Bf
1 , B

f
2 , ..., B

f
n−1}

for skip connections. Before decoding, we first unpatchify the tokens T from the
Transformer stage into sparse feature map Sn. Next, we fill mask embeddings
into all empty positions of the sparse features at different scales to get dense
features [S

′

1∼n]. After applying projection layers to reduce the width of dense
features at different scales, we perform hierarchical decoding with skip connec-
tion via:

Dn = ϕn(S
′

n). (3)

Di = Bf
i (Concat{Bup

i (Di+1), ϕi(S
′

i)}), (∀i ∈ {N − 1, ..., 2, 1}). (4)
where ϕi denotes the linear projection layer of the ith stage. Dn and Di represent
the input and output of the decoder. The final output of the decoder is D1.

2.3 Optimization objectives and downstream fine-tuning

We utilize a linear layer to reconstruct D1. Moreover, similar to MAE [13] and
SparK [17], a mean square error loss (L2) is used for reconstruction optimization
of normalized pixels at masked positions. During fine-tuning, we only use the
encoder to accomplish downstream tasks without any adjustment, as dense input
is a special case of sparse input [17]. We use a combined loss (Lseg) of binary
cross entropy (LBCE) and Dice loss (LDice) to optimize the network.

3 Experiment

3.1 Datasets

Pre-training datasets: A total of 13 public CT datasets, consisting of 6,814
CT scans, are curated to form our pre-training dataset (reviewed in Table 1).
Existing annotations or labels are not utilized from these datasets during pre-
training. The pre-train datasets are interpolated to the isotropic voxel spacing
of 1.5 mm. Intensities are scaled to [−175, 250], then normalized to [0, 1]. We
crop sub-volumes of 96× 96× 96 voxels.
BTCV dataset: The BTCV dataset [31] consists of 30 subjects with abdominal
CT scans where 13 organs are annotated by interpreters under supervision of
clinical radiologists at Vanderbilt University Medical Center. Our data prepro-
cessing strategy is the same as UNETR [29].
MSD datasets: Medical Segmentation Decathlon (MSD) dataset [38] comprises
ten segmentation tasks from different organs and image modalities. We only
use six CT datasets: Liver, Lung, Pancreas, Hepatic Vessel, Spleen, and Colon
datasets. All the pre-processing strategies are the same as Swin UNETR [30].
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Table 1. Overview of Pre-train Dataset.

Dataset (year) # of classes # of volumes downstream Dataset (year) # of classes # of volumes downstream
BTCV (2015) [31] 13 50 ✓ MSD Liver (2021) [38] 2 201 ✓
CHAOS (2018) [32] 4 40 MSD Lung (2021) [38] 2 95 ✓
WORD (2021) [33] 16 150 MSD Pancreas (2021) [38] 2 420 ✓
FLARE’22 (2022) [34] 13 2300 MSD Hepatic Vessel (2021) [38] 1 443 ✓
AbdomenCT-1k (2022) [35] 4 1062 MSD Spleen (2021) [38] 1 61 ✓
TotalSegmentator (2022) [36] 104 1202 MSD Colon (2021) [38] 1 190 ✓
AMOS22 (2022) [37] 15 600 Total 6814

3.2 Settings

HySparK can use any 3D convolutional network and patch-based ViT as the
hybrid architecture’s encoder. In the CNN stage, we choose MedNeXt [26] (the
state-of-the-art ConvNet in medical tasks) as the top encoder. In the Trans-
former stage, we implement the standard ViT [25] as the bottom encoder. It
is worth noting that we substitute the downsampling layers of MedNeXt with
max-pooling. Additionally, for the pre-trained decoder, the upsampling block
consists of two convolutional layers and an upsampling layer, while the fusion
block comprises two convolutional layers. For downstream tasks, we utilize the
MedNeXt decoder for segmentation.

For pre-training tasks, we train with an AdamW optimizer, an initial learning
rate of 1e-4, and a cosine-annealing learning rate scheduler. The pre-training
experiments use a batch-size of 8 on a single GPU and 100 epochs in 4 days.
For downstream segmentation tasks, a five-fold cross-validation strategy is used
to train models for all BTCV and MSD experiments and we select the best
model in each fold. Detailed training hyperparameters for fine-tuning BTCV and
MSD tasks are the same as Swin UNETR [30]. All methods are implemented in
PyTorch and trained on an Nvidia A800.

The Dice similarity coefficient (Dice) is used as the measurement for exper-
iment results. We select three advanced generative-based self-supervised learning
strategies: Transformer-based MAE [13] and SimMIM [13], CNN-based SparK [17]
and two advanced contrastive-based self-supervised learning method: Swin UN-
ETR [30] Pre-trained method (SUP) and vox2vec [19]. In addition, we choose
the current well-known segmentation networks UNETR [29], Swin UNETR [30],
and MedNeXt [26] as the downstream segmentation task networks of MAE,
SimMIM, and SparK, respectively. It is worth noting that MAE, SimMIM, and
SparK methods are obtained by using official codes and extending them to 3D.

3.3 Results and discussion

Results on BTCV dataset. Evaluation results on BTCV are shown in Table 2.
Compared with other competitive methods, the proposed HySparK achieves the
best performance. We obtain the highest average Dice of 80.67%, which at least
improves by 1.17% compared to other baselines. Additionally, we achieve signifi-
cant improvements in segmenting organs with smaller sizes, such as the pancreas
and adrenal glands. This shows that HySparK effectively learns strong multi-
scale representations. In addition, we fine-tune the pre-trained models using a
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Table 2. Result on BTCV. val (bold) / val (underline) : top method / second method.

Pre-training Method Spl Kid Gall Eso Liv Sto Aor IVC Veins Pan AG AvgMethod Network

20%

vox2vec [19] 3D UNet(FPN) [24] 73.97 66.80 34.64 49.51 86.72 54.28 73.70 64.43 41.64 37.35 27.00 54.14
SUP [30] Swin UNETR [30] 71.29 59.78 40.43 57.30 87.91 51.24 70.88 59.13 50.16 37.70 34.24 54.93
MAE [13] UNETR [29] 66.22 78.63 48.19 24.02 92.51 78.50 79.00 78.28 35.63 52.99 18.52 57.91
SimMIM [13] Swin UNETR [30] 71.16 62.76 42.32 56.05 88.45 52.46 71.95 60.94 51.32 39.39 35.10 56.14
SparK [17] MedNeXt [26] 79.78 72.29 38.66 58.89 91.71 68.68 81.24 71.93 57.13 51.96 29.01 61.74
HySparK MedNeXt+ViT 79.84 70.54 46.03 60.86 91.29 67.12 79.42 69.21 59.07 54.34 43.61 64.27

100%

vox2vec [19] 3D UNet(FPN) [24] 91.40 90.70 59.50 72.70 96.30 83.20 91.30 83.90 69.20 73.90 65.20 79.50
SUP [30] Swin UNETR [30] 84.20 86.70 58.40 70.40 94.50 76.00 87.70 82.10 67.00 69.80 61.00 75.80
MAE [13] UNETR [29] 90.71 87.63 62.50 70.69 94.73 86.11 90.59 83.26 71.00 75.47 63.77 79.07
SimMIM [13] Swin UNETR [30] 87.12 80.85 60.28 72.34 93.70 78.42 87.89 81.46 64.92 66.34 58.65 74.73
SparK [17] MedNeXt [26] 90.02 87.78 62.48 74.36 95.00 84.85 90.17 83.60 68.83 76.57 64.13 79.21
HySparK MedNeXt+ViT 90.67 88.32 68.18 74.20 95.03 87.46 90.17 84.50 70.04 78.36 66.75 80.67

Table 3. Result on MSD. val (bold) / val (underline) : top method / second method.

Pre-training method Liver Lung Pancreas Hepatic Vessel Spleen Colon AvgMethod Network Dice1 Dice2 Avg Dice Dice1 Dice2 Avg Dice1 Dice2 Avg Dice Dice
vox2vec [19] 3D UNet(FPN) [24] 95.60 51.00 73.70 56.60 77.00 31.80 54.40 59.50 62.40 60.95 96.10 30.10 61.97
SUP [29] Swin UNETR [29] 95.00 49.30 72.15 55.20 75.20 35.90 55.55 60.90 57.50 59.20 95.50 29.20 61.13
MAE [13] UNETR [29] 95.49 56.47 75.98 56.42 77.76 39.29 58.52 59.99 62.22 61.10 95.28 34.53 63.63
SimMIM [13] Swin UNETR [29] 95.32 55.25 75.28 60.31 76.16 44.96 60.56 60.67 61.79 61.23 95.64 41.11 65.68
SparK [17] MedNeXt [26] 95.87 62.95 79.41 65.58 78.88 47.86 63.37 61.08 67.76 64.42 96.18 49.85 69.80
HySparK MedNeXt+ViT 96.02 60.92 78.47 65.96 79.69 49.67 64.68 61.58 69.36 65.47 96.39 50.78 70.29

(a) Raw Input (b) Masked Input (b) Prediction

Fig. 2. Reconstruction Result by HySparK.

smaller (20%) training set, our HySparK significantly outperforms state-of-the-
art methods (average Dice of 64.27, 2.5% higher than other methods) and gains
the best trade-off performance in different scale organs, which highlights the
powerful downstream transferring capability of our method.
Results on MSD datasets. The overall results on the MSD dataset per task
are shown in Table 3. HySparK presents the best average Dice of 70.29%. Our
method outperforms other SOTA approaches in Lung, Pancreas, Hepatic Vessel,
Spleen, and Colon tasks. Moreover, HySparK improves Pancreas and Hepatic
Vessel lesions by at least 1.81% and 1.60% which is attributed to its strong multi-
scale representation. It is worth noting that almost all generative-based methods
outperform contrast-based methods, indicating the superior transferability of
generative-based methods.
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Table 4. Ablation study on Mask Ratio.

Mask Ratio Spl RKid Lkid Gall Eso Liv Sto Aor IVC Veins Pan Rad Lad BTCV Avg
w/o pre-trained 89.71 88.17 86.69 62.73 73.14 94.44 83.96 88.94 82.51 70.02 72.47 64.73 63.99 78.58
mask 25 % 90.52 89.76 87.55 66.42 74.93 94.98 86.21 90.61 84.28 70.96 77.92 66.26 66.90 80.56
mask 50 % 90.76 88.46 86.33 65.38 75.50 95.21 85.43 90.75 83.57 71.75 77.47 66.09 68.02 80.36
mask 75 % 90.67 89.35 87.30 68.18 74.20 95.03 87.46 90.17 84.50 70.04 78.36 66.46 67.04 80.67

Table 5. Ablation study on each components in HySparK.

HySparK components hybrid masking skip-connection skip-addition BTCV Avg
w/o pre-trained — — — 78.58
w/o bottom-up masking ✗ ✓ ✗ 79.47
w/o skip ✓ ✗ ✗ 78.80
w/ skip-addition ✓ ✗ ✓ 79.97
HySparK ✓ ✓ ✗ 80.67

Visualization. We visualize 3D reconstruction results to check what HySparK
learns in pre-training. As shown in Fig. 2, our method can almost reconstruct the
different shapes of organs, bones, and other details from the very small portion
of unmasked patches.

3.4 Ablation study

Ablation Study on Mask Ratio. Table 4 shows the influence of different
mask ratios on the model. Surprisingly, similar to MAE [13], it can be found
that a 75% mask ratio achieves the best performance in downstream tasks.
Ablation study on HySparK components. We first remove the two most
important designs in HySparK: bottom-up hybrid masking and skip connections.
When mask consistency is not maintained, we observe a significant performance
degradation in row 2 of Table 5 that almost reaches the vanilla model (row 1). It
suggests that inconsistency masking will lead to ineffective pre-training. We then
remove the skip design (row 3) or only use skip-addition (row 4), the performance
drops significantly compared to using skip-connections (row 5), which illustrates
the importance of pattern alignment for pre-training and fine-tuning tasks.
Ablation study on architecture. As demonstrated in Table 2 and 3, when the
hybrid architecture drops to single architecture (i.e., CNN in SparK or ViT in
MAE), their performance experiences a certain decrease compared to the hybrid
architecture. This demonstrates the significant role of the hybrid architecture
and its masking strategy in medical image tasks.

4 Conclusion

The success of hybrid architectures in medical tasks prompts us to explore their
potential in downstream tasks after being well pre-trained using large-scale un-
labeled medical images. In this paper, we introduce HySparK, a generative
self-supervised approach to pre-training hybrid architectures, which creates a
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bottom-up masking modeling strategy to solve the masking inconsistency. For
the problem of data distribution shift, we use sparse convolution for encoding
in the CNN stage and predict the masked tokens using unmasked patches in
the Transformer stage. Moreover, we introduce skip-connections to achieve pre-
training and downstream task pattern alignment. HySparK brings significant
performance leaps in downstream tasks and we hope our findings can inspire
more work to maximize the potential of hybrid architectures in medical tasks.
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