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Abstract. High-fidelity modeling of the pulmonary airway tree from
CT scans is critical to preoperative planning. However, the granularity
of CT scan resolutions and the intricate topologies limit the accuracy of
manual or deep-learning-based delineation of airway structures, resulting
in coarse representation accompanied by spike-like noises and disconnec-
tivity issues. To address these challenges, we introduce a Deep Geometric
Correspondence Implicit (DGCI) network that implicitly models airway
tree structures in the continuous space rather than discrete voxel grids.
DGCI first explores the intrinsic topological features shared within differ-
ent airway cases on top of implicit neural representation (INR). Specifi-
cally, we establish a reversible correspondence flow to constrain the fea-
ture space of training shapes. Moreover, implicit geometric regulariza-
tion is utilized to promote a smooth and high-fidelity representation of
fine-scaled airway structures. By transcending voxel-based representa-
tion, DGCI acquires topological insights and integrates geometric regu-
larization into INR, generating airway tree structures with state-of-the-
art topological fidelity. Detailed evaluation results on the public dataset
demonstrated the superiority of the DGCI in the scalable delineation
of airways and downstream applications. Source codes can be found at:
https://github.com/EndoluminalSurgicalVision-IMR/DGCI.

Keywords: Deep Geometric Correspondence· Implicit Neural Networks
· Airway Tree Modeling

1 Introduction

High-fidelity airway tree modeling is critical to preoperative planning, as en-
dobronchial interventions are recognized for their minimally invasive nature in
treating pulmonary diseases [12, 19, 22]. Due to the fine-scaled airway struc-
tures, manual annotation is error-prone, and highly relied on the expertise of
clinicians. The annotation is performed slice-by-slice in image stacks, therefore,
the reconstructed shape is inevitably affected by the resolution of discrete vox-
els. Furthermore, the distinctiveness of the CT images degrades along with the
bronchi becoming finer. These attributes result in the coarse delineation of airway
tree structures, along with spike-like noise disturbance, as seen in Fig.1.a.1). As
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a) Annotation is challenging due to the intricate tree-like 
structure, and the limited voxel resolution.

a.1) raw annotation a.2) w/ Laplacian smooth a.3) w/ implicit refinement

b) Skeletonization is sensitive to spike-wise noise 
implied in the raw annotation.

b.1) skel on raw annotation b.2) skel on implicit refinement

c) Pulmonary airway tree modeling suffers breakage problem.

c.1) breakage happens on airway c.2) breakage repair via implicit finetune
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Fig. 1. The challenging attributes of the pulmonary airway tree structures.

demonstrated in Fig.1.a.2), Laplacian smoothing [6] fails to ensure high-fidelity
of airways while eliminating the spike-like noise disturbance. In addition, This
type of disturbance is detrimental to the skeleton extraction [10] because it is
intrinsically sensitive to spike-like noises [1, 3, 26], as revealed in Fig.1.b.1). ith
the advancement of convolutional neural networks (CNN), automatic airway tree
modeling methods [2,7,9,13,18,24,27,28] were developed to reduce the burden of
manual delineation. However, they still model the airway structure in the discrete
voxel space, thereby encountering the aforementioned issues as well. CNN-based
methods can be trained using preoperatively annotated data for inference on
intraoperative data within the same patient, relieving the burden of repetitive
labeling. However, in this scenario, the breakage problem is prone to occur [25],
leading to the interrupted trajectory in the navigation. The discontinuity dis-
turbs automatic preoperative path planning algorithms, leading to interrupted
trajectories and wrong results for radiologists.

To address these challenges, we propose to utilize the implicit neural repre-
sentation (INR) to embrace these challenging attributes. INRs [5,15–17] employ
coordinate-based neural networks to parameterize the shapes in the continuous
physical space rather than the discrete voxel grids. They break the limitation of
the grid resolution of CT scans for the delineation of airways. Therefore, INR
facilitates a smoother annotation with high-fidelity and reduces the incidence
of spike-like noises. However, the underlying topological constraints within the
same category shape have not been well explored. Specifically, [15–17] mainly
focused on implicit surface reconstruction and can not extract topological cor-
respondence within the class. The implicit template and deformation proposed
in [5] were jointly optimized but insufficiently constrained. To mitigate this issue,
we propose a novel Deep Geometric Correspondence Implicit (DGCI) network to
implicitly model airway structures in the continuous space, and simultaneously
explore the intrinsic topological features shared within different airway cases to
constrain the learned feature space of training shapes. Unlike DeepSDF [16],
which focuses solely on implicit surface reconstruction, DGCI addresses under-
lying topological constraints within the same category. It promotes the learning
of the topological airway shape priors, which is beneficial to repair the breakage.
We hypothesize that airway structures share topological consistency among dif-
ferent cases, e.g., the continuity, as they are all single-connected tree structures.
DGCI first constructs a reversible correspondence flow between the instance
space and the shared space. In the instance space, the coordinates along with
the instance-specific latent code are first processed by an implicit SDF function,
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Fig. 2. Framework of the Deep Geometric Correspondence Implicit (DGCI) network.

and then fed into the shared-space implicit encoder to acquire the intermediate
latent feature. Then the intermediate latent feature is mapped back to the orig-
inal physical instance space via the instance-wise implicit decoder, followed by
the SDF function to acquire the sdf values. Through this deep correspondence
flow, the implicit shape modeling of airways is regularized by the intrinsic topo-
logical constraint. Further, inspired by [8], implicit geometric regularization is
adopted in DGCI to encourage the unit norm gradients of implicit SDF func-
tion to reach good local minima, favoring smooth surface reconstruction without
sacrificing fidelity. Our proposed DGCI network generates airway tree structures
with state-of-the-art topological fidelity and smoothness, as seen in Fig.1.a.3).
The DGCI network not only ensures the scalable delineation of airways but also
benefits the downstream applications (skeletonization and breakage repair). The
improved smoothness reduces the spike-wise noise, hence, enhances the accuracy
of the skeletonization, as depicted in Fig.1.b.2). As for the breakage repair, an
effective implicit fine-tune framework is proposed to repair the breakage given
the learned shape prior by the DGCI, seen in Fig.1.c.2). Compared with other
state-of-the-art methods, our method revealed the superiority in both scalable
delineation of airways with high fidelity and downstream applications.

2 Method

2.1 Deep Geometric Correspondence Implicit Network

Inspired by DeepSDF [16], we define a neural field function F to represent the
airway structures as the signed distance field (SDF) in the continuous space. F
takes the given physical coordinate p ∈ R3, along with the latent code αi ∈ RK

as input, and outputs the SDF value: s, F (p;αi) ∈ R3+K → s ∈ R. To im-
plicitly model the airway structures in the continuous space, and simultaneously
explore the intrinsic topological features shared within cases as constraints for
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Fig. 3. The implicit fine-tune framework on top of DGCI for airway breakage repair.

the learning process, we propose the Deep Geometric Correspondence Implicit
(DGCI) network, illustrated in Fig.2. In general, we perform a reversible deep
correspondence flow between the instance space and the shared space, aiming
to strengthen the topological constraints shared within instances. The deep cor-
respondence flow is constructed mainly based on an implicit Encoder-Decoder
structure, termed DGCI-ED. Both the encoder E and the decoder D are imple-
mented by Multilayer Perceptrons (MLPs). E and D are driven by the instance-
wise latent code αi and shared-space latent code β, respectively. Followed by
the design of hypernetwork [4, 21], we use αi and β to construct separate hy-
pernetworks, φαi , and φβ , for E and D . The φαi and φβ also comprise a set of
MLPs, each responsible for the weights of a single fully-connected layer i within
the E and D . Hence, the DGCI-ED is defined as DGCI-ED = Dφαi ◦ Eφβ . Eφβ
is driven by the unique latent code φβ shared by all instances, which constrains
the shape modeling process to learn intrinsic topological features. Specifically,
Eφβ takes physical coordinates along with SDF values generated by F as input
and encodes these geometric information into the intermediate latent feature
zi. F is also implemented based on the hypernetwork that is parameterized by
instance-wise latent code αi. The intermediate feature zi is defined as:

Eφβ (p,F (p;αi)) = Eφβ (p,Fφαi (p))→ zi ∈ RK. (1)

Upon acquiring the intermediate latent feature zi, the feature correspondence
from the instance space to the shared space has been built. Next, to obtain
the SDF value of the original shape, Dφαi converts the intermediate latent fea-
ture back to the instance space, followed by the F to acquire final SDF values:
Fφαi (Dφαi (zi))→ s ∈ R. The overall design of the DGCI is clarified as follows:

F(DGCI-ED(p;αi, β)) = Fφαi (Dφαi ◦ Eφβ (p,Fφαi (p)))→ s ∈ R. (2)

For simplicity, we use F(p;αi, β) instead of F(DGCI-ED(p;αi, β)) to clarify
the following optimization process. DeepSDF [16] only constrains the L1 loss
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function between the predicted SDF values and ground-truth SDF values, which
is not sufficient to model the fine-scaled airway structure with high fidelity.
Inspired by [8], we add additional geometric regularization to facilitate smooth
and high-fidelity implicit representation on fine-scaled airway structures. First,
the gradients of the implicit function F(p;αi, β) with regard to surface points
are encouraged to be close to the given normals. Second, the Eiknoal term is
introduced to force the gradients of F(p;αi, β) to be of unit 2-norm.

2.2 Optimization Procedure

The main objective function Lsdf that optimizes the F(p;αi, β) consists of two
components, Lsdf = Lsdf−val + Lsdf−geo. These two components respectively
optimize the values and geometries of the predicted SDF of the shapes:

Lsdf−val =
∑
i

(ωs
∑
p∈Ωi

∣∣∣F(p;αi, β)− s′ ∣∣∣+ ωϕ
∑

p∈Ωi\Si

ϕ(F(p;αi, β))), (3)

Lsdf−geo =
∑
i

(ωn
∑
p∈Si

(1− Scos(∇F(p;αi, β), n
′
))+

ωEik
∑
p∈Ωi

|‖∇F(p;αi, β)‖2 − 1|),
(4)

where Ωi and Si denote the whole space and the surface of the ith instance,
respectively. s

′
and n

′
indicate the ground-truth of SDF and surface normal,

respectively. Eq.3 directly supervises the SDF regression results and penalizes
off-surface points with SDF prediction to zero: ϕ(s) = exp(−δ · ‖s‖), δ � 1.
Eq.4 supervises the normal consistency and enforces the amplitude of the SDF
gradient function determined by the Eiknonal equation, Scos represents cosine
similarity measurement. In addition, we employ the intra-regularization and
inter-regularization on αi and β, Lreg = Lintra−reg + Linter−reg: Lintra−reg =

ωintra(
∑
i ‖αi‖

2
2+‖β‖

2
2),Linter−reg = ωinter

∑
i(‖αi − β‖

2
2). where the Lintra−reg

regularizes instance-space latent codes αi and β separately, the Linter−reg en-
sures the similarity between various instance latent codes and the shared latent
code. In addition, we introduce Lcor to ensure the accuracy of the deep correspon-
dence flow: Lcor =

∑
i(ωcor

∑
p∈Si(

∥∥p−Dφαi (zi)
∥∥2
2
)). In total, the optimization

of the DGCI can be summarized as Ltotal = Lsdf + Lreg + Lcor.

2.3 Downstream Applications of DGCI

Skeletonization. Given that the transformation between the image coordinates
and the physical coordinates is invertible, we perform the inverse transform to
map the reconstructed shape surface via DGCI back to its image coordinate sys-
tem. Then the hole-filling algorithm is conducted to acquire the dense volume.
Breakage Repair. We propose an effective implicit fine-tune framework for the
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Table 1. Quantitative results of the airway shape representation. Results are reported
by mean ± standard deviation. TD, BD, Dice are reported in percentage form (%).

Method
Continuous Space Discrete Space

NM-V ↓ NM-E ↓ NM-F ↓ TD ↑ BD ↑ Dice ↑

MC [11] 30.9±20.9 120.1±83.0 2102.4±1094.9 – – –

MC w/ Lap 15.0±10.0 450.7±213.7 1656.9±662.6 – – –

Occ [15] 4.7±1.7 12.6±9.3 338.3±160.7 28.7±7.6 27.2±7.3 73.5±3.9

Con-Occ [17] 2.1±1.5 20.4±7.2 1309.7±395.4 43.2±11.1 43.6±11.0 75.1±3.75

DeepSDF [16] 1.5±0.9 7.1±6.7 276.5±190.6 82.3±11.9 84.2±11.7 79.8±4.3

DIFNet [5] 0.7±0.3 5.1±4.9 265.9±197.4 89.4±13.4 91.5±12.5 82.5±4.2

DGCINet (ours) 0.0±0.0 4.6±6.6 235.3±170.5 98.6±1.4 99.7±0.7 91.2±2.0

MC MC w/ Lap Occ Con-Occ DeepSDF DIF DGCINet (Proposed)

Fig. 4. Visualization of reconstructed airway shapes. The blue boxes and red arrows
denote the locally detailed structures magnified for better comparison.

breakage repair, as seen in Fig.3. The point cloud data refinement was first in-
troduced to avoid overfitting local fractured patterns during the fine-tune stage.
Specifically, it includes the synchronous point cloud denoising and completion,
followed by the correction of normals for the complemented point clouds. Take
the single breakage as an example, the breakage generates two isolated connected
components, denoted as X and Y, respectively. The closet point-pair {x∗, y∗} is
defined as x∗ = minx∈X (miny∈Y ‖x− y‖2), y∗ = miny∈Y(minx∈X ‖y − x‖2). The
breakage center is defined as 1

2 (x
∗+y∗), and the breakage radius is 1

2 ‖x
∗ − y∗‖22.

The points that lie in the radius range are removed as noises brought by the
breakage. Meanwhile, we conducted the point cloud completion based on [23].
The complemented points that lie in the radius range are chosen. Next, the nor-
mals of the complemented points are assigned by k-nearest neighbors embedding.
Subsequently, the pretrained DGCI takes refined data as input, and fine-tune to
repair the breakage based on the learned shape prior. Multiple breakages can be
processed as several independent breakages.

3 Experiments and Results

Datasets. The public Binary Airway Segmentation (BAS) dataset [18] contains
90 CT scans with the airway annotation. We split them into 50, 20, and 20
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Table 2. Quantitative results about the skeletonization of airways.

Method CD ↓ (mean ± std) EMD ↓ (mean ± std) CD ↓ (median) EMD ↓ (median)

skel [10] 2.26±2.20 7.54±1.97 1.47 7.40

cldice [20] 2.91±2.60 8.94±2.22 2.24 8.40

gbo-skel [14] 2.48±4.00 8.14±3.94 0.74 6.83

DGCINet + skel 0.14±2.20 4.81±1.97 0.11 4.61

skel cldice
full view lcoal detail

gbo-skel
full view lcoal detail

DGCINet + skel
full view lcoal detailfull view lcoal detail

full view lcoal detail full view lcoal detail full view lcoal detail full view lcoal detail

Fig. 5. Visualization of the skeletonization results. The boxes and yellow arrows denote
local differences generated by different methods.

instances into training, validation, and testing sets, respectively. As the annota-
tion is provided by the 3D volume, we first obtain the shape surface by Marching
Cube, and then follow [16] to prepare the normalized SDF points.
Implementation Details. The Eφβ and Dφαi were implemented by three and
two hidden layers of MLPs, respectively. The SDF function F was designed by
four hidden layers of MLPs. The weights of each single fully connected layer of
Eφβ , Dφαi , and F were decided by three hidden layers of the hypernetwork φ. φαi
took instance-specific latent code as input and was responsible for the weights of
the Dφαi and F . The shared-space latent code β was adopted to drive the Eφβ ,
which was shared across the category. The dimension of latent codes αi and β,
hidden features, and intermediate features were all set to 128. Inspired by [21],
ωs, ωϕ, ωn, and ωEik were set to 3e3, 5e2, 1e2, 5e1 in the Lsdf , respectively.
In Lreg, ωintra and ωinter were set to 1e6 and 1e2, respectively. 5e4 is used in
Lcor. 4K surface points along with 4K free points were randomly sampled in
each iteration. The total epoch was set to 500, and the DGCI model is opti-
mized using an Adam optimizer with a learning rate of 1e − 4 and a batchsize
of 16. The experiments were executed on a Linux workstation (Intel Xeon Gold
5119T CPU @ 1.90GHz, 2 NVIDIA Geforce RTX 3090 GPUs). During infer-
ence, our method only needs about 10 seconds for one case, revealing that the
computational complexity is not heavy.
Evaluation Metrics. To measure the performance of the shape modeling, we
adopted the non-manifold(NM) vertices (NM-V), NM edges (NM-E), and NM
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Input
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Implicit Finetune w/ 

refinement (proposed)
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Implicit Finetune w/ 
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Ground-Truth

Fig. 6. Visualization of the breakage repair performance by different fine-tune methods.
The breakage areas are amplified within the blue boxes for better comparison.

faces (NM-F). NM-V is a vertex connected to three or more non-coplanar faces.
NM-E is an edge shared by three or more faces. NM-F refers to faces arranged
in such a way that a closed and continuous body cannot be formed. Fewer non-
manifold properties indicate better connectivity and smoothness of reconstructed
shapes. Tree length detected rate (TD, %), branch detected rate (BD, %), and
Dice were used to measure the topological completeness and correctness in the
voxel space. Chamfer Distance (CD, mm) and Earth Mover’s Distance (EMD,
mm) were chosen to measure the performance of the extracted skeleton.
Analysis of the Implicit Shape Modeling Results. To evaluate the shape
representation ability on the airway structures of the proposed DGCI, we com-
pared the other state-of-the-art shape modeling methods using implicit repre-
sentations: Occ Net [15], Conv-Occ Net [17], DeepSDF [16], and DIFNet [5].
Table.1 shows the shape representation accuracy on airway structures, The pro-
posed DGCI achieved the best performance on both the continuous space and
the discrete space. Specifically, DGCI can reduce the number of NM-V, NM-
E, and NM-F from 30.9, 120.1,and 2102.4 generated by Marching Cube (MC)
to 0.0, 4.6, and 253.3. Meanwhile, the reconstructed shapes can achieve 98.6%
TD, 99.7% BD, and 91.2% Dice, which proved that DGCI kept the topological
structures during the shape modeling. Although the MC with Laplacian smooth
could reduce the NM-V and NM-F, however, the number of NM-E had increased.
Other implicit methods can consistently reduce the NM-V, NM-E, and NM-F
compared to MC. However, they cannot guarantee the connectedness of the re-
constructed airway shapes, consequently, their TD and BD are significantly lower
than the proposed DGCI. The DGCI can exceed more than 8% TD and BD than
other comparative implicit methods, which enhances the clinical value of pre-
operative surgical path planning. Fig.4 visually demonstrates the superiority of
the DGCI in preserving airway structures with high fidelity. More visualization
can be found in the Supplementary Material.
Analysis of the Downstream Application Results. For the skeletonization,
Table.2 and Fig.5 revealed that cldice [20] and gbo-skel [14] cannot satisfacto-
rily extract the skeleton from complex airway structures. However, our proposed
method reduced spike-wise noises existed in the raw annotation of airways, con-
tributing to the improvement of the skeletonization. Table.2 demonstrated that
the DGCI can reduce the average CD and EMD from 2.26 and 7.54 to 0.14 and
4.81. Fig.5 corroborated this improvement, as seen in the local details pointed out
by yellow arrows, the false positive branches were substantially reduced, which is
critical to ensure the accuracy of preoperative surgical path planning. As for the
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breakage repair, directly fine-tune the pretrained implicit network would over-
fit the fractured patterns, as shown in Fig.6. However, equipped with the data
refinement before the implicit fine-tune could solve this problem, the breakage
parts were repaired by the learned shape prior of the implicit representation.

4 Conclusion

In this paper, we propose a Deep Geometric Correspondence Implicit (DGCI)
network to implicitly model the pulmonary airway tree structures in the contin-
uous space. The intrinsic topological regularization shared within the category
was explored by a reversible deep correspondence flow on top of the implicit net-
work design. The implicit geometric regularization was further utilized to favor
smooth and high-fidelity implicit representation on fine-scaled structures. Com-
pared with the previous works, detailed evaluation results verified the superiority
of the DGCI in scalable delineation of airways and downstream applications.
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