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Abstract. In recent years, transformer-based image classification meth-
ods have demonstrated remarkable effectiveness across various image
classification tasks. However, their application to medical images presents
challenges, especially in the feature extraction capability of the network.
Additionally, these models often struggle with the efficient propagation
of essential information throughout the network, hindering their perfor-
mance in medical imaging tasks. To overcome these challenges, we intro-
duce a novel framework comprising Local-Global Transformer module
and Spatial Attention Fusion module, collectively referred to as Med-
Former. These modules are specifically designed to enhance the feature
extraction capability at both local and global levels and improve the
propagation of vital information within the network. To evaluate the effi-
cacy of our proposed Med-Former framework, we conducted experiments
on three publicly available medical image datasets: NIH Chest X-ray14,
DermaMNIST, and BloodMNIST. Our results demonstrate that Med-
Former outperforms state-of-the-art approaches underscoring its superior
generalization capability and effectiveness in medical image classification.
Code: https://github.com/jignesh9999/class
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1 Introduction

Medical image classification is pivotal in the development of Computer-Assisted
Diagnostic (CAD) systems, reducing diagnosis time and assisting in diagnosis
[1,18,2]. However, medical image classification presents challenges due to the in-
trinsic complexities of diseases, such as very small infected regions (e.g., nodules
in chest x-rays), poor contrast between background and infected regions, and
diseased areas resembling other normal areas (e.g., diseased black dots on skin
similar to mole marks).

Recent advancements in deep learning [16] have led to the widespread adop-
tion of convolutional neural network (CNN)-based approaches for natural image
recognition tasks. Despite their remarkable performance, CNNs have inherent
limitations. For instance, each convolutional kernel can only focus on a sub-region
of the input image due to its inherent inductive biases, complicating the extrac-
tion of global contextual information crucial for medical image classification.

https://github.com/jignesh9999/class
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To tackle this challenge, researchers introduced Inception networks [17], capable
of extracting multi-scale information. However, these networks encounter issues
such as vanishing gradients and information loss from earlier layers. To address
these concerns, researchers developed Residual networks [7] and DenseNets [8].
Residual networks incorporate a residual (or skip) connection between the input
and output of each convolutional block, while DenseNets utilize dense connec-
tions between all layers, with each layer’s input being the concatenated output
of all preceding layers. Although these networks capture information from ear-
lier layers, they may not enable the model to focus attentions on specific regions
essential for medical image classification, as they lack attention mechanisms to
emphasize important features.

Recently, Transformer-based approaches with self-attention mechanisms have
been developed for image recognition, such as Vision Transformers (ViT) [3],
capable of capturing better contextual information compared to CNNs [10,6].
These methods partition the input image into non-overlapping patches and uti-
lize a window (a collection of patches) for self-attention computation. To further
enhance contextual information extraction, researchers introduced Swin Trans-
formers [12]. These networks employ sequentially connected two transformer
blocks with different window strategies for computing self-attention. However,
these networks do not fully capture information at local and global levels and
suffer from information loss from earlier layers.

To address these limitations, we introduce Med-Former, a transformer-based
approach adept at enhancing the capability of extracting essential information at
both local and global levels while mitigating issues of information loss during the
propagation of essential information throughout various layers of the network.
Our contributions are outlined as follows:

– We introduce a Local-Global Transformer (LGT) module, inspired by the
structure of the Swin Transformer module. This module comprises two par-
allel attention computation paths, each with different window sizes in both
the window and shifted window blocks. This design enhances the extraction
of contextual information at both local and global levels, thereby improving
the performance of medical image classification.

– We propose a Spatial Attention Fusion (SAF) module designed to fuse in-
formation from earlier layers and facilitate the propagation of more essential
information through the network.

– Based on the LGT and SAF modules, our Med-Former has demonstrated
superior performance compared to the latest state-of-the-art on benchmark
datasets with various imaging modalities and diseases, including thoracic
disease classification from chest X-rays, skin lesion classification from der-
moscopic images, and blood cell classification from microscopic images, jus-
tifying Med-Former’s effectiveness in generalizing to different medical image
classification tasks.
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Fig. 1. Architecture of the proposed Med-Former.

2 Methodology

In this section, first we describe the overview of Med-Former architecture. Then
we introduce the technical details of the newly designed Local-Global Trans-
former (LGT) module, and Spatial Attention Fusion (SAF) module, which are
key elements of the Med-Former.

2.1 Overview

Figure 1 illustrates the Med-Former architecture, comprising a Patch Partition-
ing layer, a Linear Embedding layer, LGT modules, Patch Merging layers, SAF
modules, and an MLP for classification. The Patch Partitioning layer divides the
input image into patches of size s × s, where s represents the patch width or
height. These patches are processed via a Linear Embedding layer in the Embed-
ding phase before being processed by a LGT module and forwarded to subsequent
stages. The subsequent stages incorporate Patch Merging layers, LGT modules,
and SAF modules. Each stage utilizes a Patch Merging layer to downsample the
input feature maps. A SAF module is employed to fuse outputs from both the
previous stage’s SAF module and the current stage’s LGT module, improving
the continuity of essential feature propagation and reducing information loss.
Stage 0 differs from the K sequential stages slightly, which incorporates fused
outputs from the Embedding phase’s LGT module and the current stage’s LGT
module, thereby enhancing the contextual understanding of the input image.

2.2 Local-Global Transformer (LGT) Module

The proposed LGT module diverges from the conventional Swin-Transformer
architecture by integrating two parallel paths (Figure 2(a)): the Global path
Gp and the Local path Lp for computing Multihead Self-attention (MSA) with
varying window sizes in both of the two transformer blocks (i.e., block l and
l + 1). The Gp employs a global window of size m×m, and Lp employs a local
window of size n×n, where m > n. This configuration facilitates the extraction



4 Chowdary G.J., and Z Yin

Fig. 2. Architecture of the proposed Local-Global Transformer (LGT) module (a)
and Spatial Attention Fusion (SAF) module (b). LN represents Layer Normalization,
W-MSA represents Window-Multihead Self-Attention, SW-MSA represents Shifted
Window-Multihead Self-Attention. The subscripts m and n in W-MSA and SW-MSA
represent the window sizes. MLP represents Multi-Layer Perceptron. SPA and SPB

represent the spatial attention maps of feature maps fA and fB , respectively.

of both global and local information at the window level, thereby enhancing the
feature representation learning and classification performance. The outputs of
Gp and Lp in block l with MSA on various windows, represented as Wm−MSA
and Wn − MSA, are later combined and propagated to the next block l + 1
with MSA on shifted windows, denoted as SWm − MSA and SWn − MSA,
respectively.

2.3 Spatial Attention Fusion (SAF) Module

The proposed SAF Module (Figure 2(b)) is utilized to fuse feature maps from
the preceding layers and stages, facilitating the transfer of crucial information
within the network with less information loss. This module accepts two feature
maps, fA and fB , where fA is the feature map from the preceding stage, and
fB is the feature map from the previous layer. Initially, it downsamples the
feature map fA to match the dimensions of the feature map fB . Subsequently,
spatial attention maps SPA and SPB are computed for feature maps fA and
fB , respectively. Finally, the fused output of SPA and SPB is forwarded to the
succeeding stage.
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3 Results

In this section, we first describe the datasets, evaluation metrics, and imple-
mentation details. Then, we present the comparison with latest state-of-the-art
methods, and discuss the ablation results.

3.1 Datasets and Performance Metrics

To assess the generalization capability of the proposed Med-Former, it undergoes
testing on three distinct medical image classification tasks, each representing
different imaging modalities and disease types: thoracic disease classification
from chest X-rays (NIH Chest X-ray14, denoted as ChestX) [19]; skin lesion
classification from dermoscopic images (DermaMNIST, denoted as DM) [20];
and blood cell classification from microscopic images (BloodMNIST, denoted as
BM) [20].

The study employs the official dataset splits for training and evaluating Med-
Former. For ChestX, the training/validation set consists of 86,524 images, while
the test set comprises 25,596 images. For DM, the training/validation set in-
cludes 8,010 images, and the test set contains 2,005 images. For BM, the train-
ing/validation set consists of 13,671 images, and the test set comprises 3,421
images.

Following other state-of-the-art (SOTA) methods [9,14,13,15,4,5,11], we em-
ployed classification accuracy (ACC) and the area under the curve (AUC) for
the evaluation on the DM and BM datasets, while the AUC was used for the
ChestX dataset.

3.2 Implementation Details

For the three datasets, the number of stages of Med-Former is determined to
be K = 3, by cross-validation. The model is trained by minimizing the Cross-
Entropy loss for 400 epochs, using a batch size of 16 and an initial learning rate
of 0.001. Additionally, the learning rate is decayed by a factor of 0.1 every 100
epochs. All experiments are conducted on an NVIDIA Tesla V100 GPU with 32
GB of RAM.

Table 1. Performance comparison with transformer-based approaches. The best per-
formance is highlighted in bold.

Method
Datasets

NIH DM BM
AUC ACC AUC ACC AUC

Vision Transformer (ViT) [3] 0.836 0.739 0.883 0.921 0.985
Swin Transformer [12] 0.841 0.753 0.903 0.935 0.991
Ours 0.876 0.783 0.946 0.965 0.997
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3.3 Performance Comparison

Firstly, we evaluate the performance of the proposed Med-Former against ex-
isting transformer-based approaches, namely Vision Transformer (ViT) [3] and
Swin Transformer [12]. To ensure a fair comparison, ViT and Swin Transformer
are trained and evaluated on the ChestX, DM, and BM datasets using the same
evaluation protocol. The results of this comparison are summarized in Table 1.
As shown, the proposed Med-Former outperforms ViT and Swin Transformer,
showcasing its superior generalization capability.

Secondly, we compare Med-Former against SOTA approaches in Table 2. All
these approaches have reported their results using the same evaluation protocol
as our work, enabling a fair comparison. As observed, Med-Former surpasses the
SOTA methods, emphasizing the effectiveness of its local-global feature learning
and the information propagation through the network.

Lastly, we illustrate the performance of Med-Former through some correctly
classified and misclassified samples in Figure 3. The misclassifications arise from
diseases sharing similar characteristics, such as white lung fields in chest X-rays,
widespread infection (not as a cluster) in dermoscopic images, and similar ex-
tracellular and intracellular structures in microscopic images. In the future, to
overcome these limitations, we plan to enrich our model with additional infor-
mation, such as patient symptoms, to aid in diagnosis.

Table 2. Comparison with state-of-the-art approaches on ChestX [19], DM [20], and
BM [20] datasets.

ChestX [19] DM [20] BM [20]
Method AUC Method ACC AUC Method ACC AUC

Kamal et al. [9] 0.850 MedViT [14] 0.773 0.920 MedViT [14] 0.954 0.996
Luo et al. [13] 0.834 BP-CapsNet [11] 0.774 0.923 BP-CapsNet [11] 0.946 0.996
Nie et al. [15] 0.857 SADAE [4] 0.759 0.927
DGFN [5] 0.850
Ours 0.876 Ours 0.783 0.946 Ours 0.965 0.997

3.4 Ablation results

We conducted a series of ablation experiments to assess the effectiveness of var-
ious modules within Med-Former. The quantitative results of these experiments
are summarized in Table 3, and the qualitative comparison is presented in Figure
4.

– In row 2, we concatenated the information from the two preceding stages in
the original Swin Transformer and passed them as input to the current stage.
This resulted in improved performance compared to row 1, indicating that
information flow from earlier layers enhances classification performance.
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Fig. 3. Correctly classified, and misclassified samples by the Med-Former. P - Predicted
class; T - Ground truth class.

– Row 3 builds upon row 1 by passing the combined output of the preceding
stages using the Spatial Attention Fusion (SAF) module. This further im-
proves performance, suggesting that the SAF module facilitates the flow of
important information from earlier stages.

– In row 4, we present the performance of Med-Former with Local-Global
Transformer (LGT) modules but without information from the preceding
layers or SAF modules. The enhanced performance of row 4 compared to
the original Swin Transformer in row 1 underscores the local and global
feature extraction capability of the LGT module for improving medical image
classification.

– Row 5 extends row 4 by adding information from the preceding layers and
stages and fusing the features using the standard concatenation. This further
enhances the classification performance compared to row 4, indicating the
effective propagation of local and global information through the network.

– Finally, in row 6, we present the performance of the complete Med-Former
model. Compared to other configurations, this model achieves the highest
performance, highlighting the local-global feature extraction capability of
LGT modules and the effective flow of essential information through the
network facilitated by SAF modules.
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Table 3. Ablation experiments were conducted on the ChestX [19], DM [20], and BM
[20] datasets. The ‘IF’ denotes the information flow from earlier layers.

Row Swin Transformer LGT IF with
Concat

IF with
SAF

Datasets
NIH DM BM
AUC ACC AUC ACC AUC

1 0.841 0.753 0.903 0.935 0.991
2 0.843 0.760 0.909 0.938 0.991
3 0.846 0.763 0.914 0.942 0.992
4 0.848 0.761 0.912 0.941 0.992
5 0.852 0.778 0.925 0.956 0.994
6 0.876 0.783 0.946 0.965 0.997

Fig. 4. GRAD-CAM visualizations of the six ablation study configurations.

Figure 4 illustrates qualitative examples corresponding to the six rows in Ta-
ble 3. The addition of cross-layer information enhances the Swin Transformer’s
ability to understand contextual information (Swin Transformer + IF Concat),
thereby allowing the model to focus on the Region of Interest (ROI). Further-
more, integrating the SAF module as a plug-in effectively propagates essential
information (Swin Transformer + IF SAF), further refining the model’s focus.
The LGT module extracts crucial contextual information by focusing on the ROI,
although it extends slightly beyond, which the SAF module addresses (LGT +
IF SAF). These findings indicate that Med-Former (LGT + IF SAF) effectively
captures the essential information necessary for diagnosis.
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4 Conclusion

We introduced Med-Former, a transformer-based architecture tailored for medi-
cal image classification. Addressing limitations in existing models regarding the
propagation of essential information from earlier layers and enhancing the fea-
ture extraction capability at both local and global levels, we designed the Local-
Global Transformer (LGT) and Spatial Attention Fusion (SAF) modules. These
modules enable Med-Former to effectively learn both local and global informa-
tion, facilitating the propagation of essential information through the network.
We evaluated our approach on three distinct medical image classification tasks:
thoracic disease classification from chest X-rays, skin lesion classification from
dermoscopic images, and blood cell classification from microscopic images, re-
spectively. Across these tasks, our approach consistently outperformed other
transformer-based architectures and state-of-the-art methods.

Disclosure of Interests The authors have no competing interests to declare
that are relevant to the content of this article.
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