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Abstract. 3D skeleton is critical for analyzing vascular structures with
many applications, it is however often limited by the broken skeletons
due to image degradation. Existing methods usually correct such skele-
ton breaks via handcrafted connecting rules or rely on nontrivial manual
annotation, which is susceptible to outliers or costly especially for 3D
data. In this paper, we propose a self-supervised approach for vascula-
ture reconnection. Specifically, we generate synthetic breaks from con-
fident skeletons and use them to guide the learning of a 3D UNet-like
skeleton completion network. To address serious imbalance among dif-
ferent types of skeleton breaks, we introduce three skeleton transforma-
tions that largely alleviate such imbalance in synthesized break samples.
This allows our model to effectively handle challenging breaks such as
bifurcations and tiny fragments. Additionally, to encourage the connec-
tivity outcomes, we design a novel differentiable connectivity loss for fur-
ther improvement. Experiments on a public medical segmentation bench-
mark and a 3D optical coherence Doppler tomography (ODT) dataset
show the effectiveness of our method. The code is publicly available at
https://github.com/reckdk/SkelCompletion-3D.
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1 Introduction

Skeletonization is a fundamental step for analyzing curvilinear structures, such
as blood vessels and neurons [10, 24, 25, 28]. Based on the topological structure
of the skeletons, researchers and doctors can quantitatively assess vascular dis-
tribution, density, and morphological changes, which provides valuable insights
into diseases, drug effects, and neuroscience studies. For example, the precise
reconstruction of vasculature is crucial in the analysis of tumor angiogenesis,
reflecting the cancer progression and response [27]. Besides, the rupture of brain
vessels is one of the leading causes of stroke, which results in numerous fatalities
each year. Identifying the process of vascular remodeling, such as the connections
between arteries, has shown great promise in improving the prognosis accuracy
and patient outcomes [2, 15].

https://github.com/reckdk/SkelCompletion-3D
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Fig. 1: Examples of 3D skeleton completion. From left to right: 3D ODT volume,
skeleton input, and completed skeleton. Our work focuses on reconnecting the
broken skeletons indicated by green arrows.

Despite previous efforts on automatic skeletonization [14, 20, 21, 31], bro-
ken skeletons often occur due to image noise and disease-related appearance
changes [30], introducing difficulties in quantitative analysis. In the widely-used
pipeline from image to segmentation to skeleton, the accuracy of skeletonization
relies on the quality of segmentation. In scenarios where under-segmentation
error occurs, particularly in the noise-affected areas, it results in incomplete
foreground masks and, consequently, leads to fragmented skeletons.

Previous methods for correcting breaks can be roughly categorized as rule-
based and learning-based. Rule-based methods [4,17] deal with broken skeletons
directly and usually act as post-processing that detects breaks and then links
the fragments. The detection contains a set of handcrafted policies, such as con-
straints on distance, curvature [4], and curve-fitting [17,30], to determine whether
the two fragments should be connected. Rule-based methods requires minimal, if
any, training data requirements. However, the manually defined constraints may
not generalize to various complex scenarios. On the other hand, the learning-
based methods restore breaks in the preceding segmentation stage to indirectly
reconnect skeleton fragments. Various approaches based on graphs [6,16], topol-
ogy [11, 26], and loss functions [19, 29] have been proposed to enhance segmen-
tation results. Learning-based methods can acquire more representative features
during training and are thus more flexible in dealing with breaks of various types
of morphology. However, these methods are based on supervised learning and
thus not feasible for the datasets without ground truth annotations.

Recently, self-supervised learning (SSL) [9,32] addresses the scarcity of ground
truth data through a set of training schemes, garnering increasing attention [7].
Integrating the confident and learnable information plays a pivotal role in SSL.
Meanwhile, we have observed that, though underperforming in noisy regions, cur-
rent skeletonization algorithms produce reliable topological structures in most
normal regions. Leveraging such reliable structures can benefit the training pro-
cess to capture more connectivity related features for reconstruction.

Thus inspired, we propose a self-supervised 3D skeleton completion approach
to deal with the aforementioned challenges: (1) Our model is trained in a self-
supervised manner, eliminating the need for manual annotations. We achieve
this by synthesizing breaks from confident skeletons and use them to guide the
learning of a 3D UNet-like [5] skeleton completion network. Subsequently, our
model utilizes the prior learned skeleton structures for real break completion in
the same samples, demonstrating self-adaptiveness. (2) To handle the significant
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Fig. 2: (a) Vascular forests. (b) Relationship between skeleton transformations
and break types. Solid line: direct synthesis; dashed line: indirect synthesis.

imbalance across various types of skeleton breaks, we propose three skeleton
transformations that largely mitigate the long tail issues in synthetic break sam-
ples. This improves the model’s completion ability, especially in challenging cases
such as bifurcations and tiny fragments. (3) To enhance connectivity outcomes,
we design a novel loss function to further improve the performance, which is made
differentiable for end-to-end training. Besides, different from previous methods,
we decouple skeleton completion from image modalities or segmentation, which
relieves the difficulty in learning dissimilar data distributions and filters out in-
tensity noises. Hence our model is capable of reconnecting the broken skeleton
from various segmentation approaches, i.e., gradient-based filters, deep learn-
ing models, and imperfect manual annotations, for different image modalities,
including CT, ultrasound, and ODT.

Comprehensive evaluations are conducted on the popular Medical Segmen-
tation Decathlon (MSD) dataset [3] and a 3D optical coherence Doppler tomog-
raphy (ODT) dataset. The results show clearly the effectiveness of the proposed
method in comparison with previous arts.

2 Methods

2.1 Problem Formulation

The input of our skeleton completion problem contains a 3D volume and initially
extracted skeletons organized in a forest F := {T 1, T 2, . . . } of trees; each tree
T i := {Si

1,Si
2, . . . } has multiple skeletons; each skeleton Si

j := [vi
j,1,v

i
j,2, . . . ] has

an ordered list of voxel-based nodes; and each node is defined by a 6-tuple

vi
j,k :=

(
zij,k, y

i
j,k, x

i
j,k, d

i
j,k, sid

i
j,k = j, tid i

j,k = i
)
, (1)

containing the 3D coordinates, degree, skeleton index, and tree index respec-
tively. The degree is the number of nearby connected voxels. We utilize the
6-tuple for selecting input patches and synthesizing breaks.

The left sub-figure of Fig. 2a illustrates a vascular forest with two trees (T 1

and T 2). T 1 has three skeletons (S1
1 , S1

2 , and S1
3 ) while T 2 has only one skeleton

S2
1 . However, T 1 will split into three trees (T 1, T 3, and T 4) when there is a

Bifur-break, as illustrated in the right sub-figure of Fig. 2a. Without loss of
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Fig. 3: Training pipeline of the proposed 3D skeleton completion approach. Red
voxels are removed for training.

generality, we assume there is a break between va and vb (indices are replaced
with a and b for simplicity), if the following conditions are met:
1. ∥(za, ya, xa)− (zb, yb, xb)∥ ≤ τ , for a predefined distance threshold τ .
2. The curvilinear structures near va and vb show similar geometric properties,

such as direction and curvature.
3. sida ̸= sidb and tida ̸= tidb, i.e., no circle in the tree.

Our task is to reconnect such breaks in the vascular forest.

2.2 Skeleton Transformations

A primary challenge in vascular skeleton completion is the diversity and un-
certainty inherent in real-world breaks. Based on location, branch number, and
length, we categorize breaks into four types: (1) Mid-breaks (split a skeleton in
the middle to two long branches), (2) Tip-break (breaks near the end of a skele-
ton), (3) Multi-breaks (breaks with more than two branches in a line), and (4)
Bifur-breaks (bifurcation breaks with more than two interconnected branches),
as shown in Fig. 2b. The naive SSL, i.e., simply removing mid voxels in a skele-
ton for training, has two critical issues: (1) it can only generate Mid-break and
hence has poor generalizability for rare and complex breaks; and (2) the synthe-
sized breaks are always located at the patch center to avoid crossing boundaries,
leading to severely performance drop as breaks deviate from the center. To ad-
dress the aforementioned issues of naive SSL, we propose three types of skeleton
transformation as follows.
– RoI Shifting (RoI Shift) shifts the patch several voxels away from the

original center, improving the robustness against location bias.
– Skeleton Slipping (Skel Slip) removes voxels towards the skeleton end

rather than the center, enriching the training samples significantly.
– Skeleton Shattering (Skel Shatter) randomly removes of discontinuous

voxels to simulate severely broken skeletons with multiple fragments.
Fig. 2b illustrates the relationship between skeleton transformations and break
types. These transformations broaden the coverage of synthesized breaks, effec-
tively mitigating long tail issues. Furthermore, both RoI Shift and Skel Slip relax
the model’s attention away from the exact center, restoring breaks anywhere in
the patch. Consequently, our model waives the need for explicit break detection.
Notably, our model can autonomously reconnect most breaks in a volume via
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inferring at all endpoints. This fully automatic approach is efficient as locating
endpoints proves more practical than detecting breaks.

2.3 Self-supervised Learning and Connectivity Loss

Given a dataset with reliable skeletons in most regions except the skeleton
breaks, we introduce a self-supervised skeleton completion approach to recon-
nect these breaks. Fig. 3 illustrates the training pipeline. Initially, we randomly
sample 3D patches X ∈ {0, 1}W×W×W with long skeletons. Next, we apply the
proposed skeleton transformations on X to generate input patches {X ′

1,X
′
2, . . . }

with corresponding binary masks {M1,M2, . . . } (where 1 indicates removal for
training). Lastly, we use these synthetic break samples to train the 3D skeleton
completion network f , which is derived from the 3D UNet [5], as shown in Fig. 3.
The model output Y = f(X ′) ∈ [0, 1]W×W×W is a confidence map of missing
skeletons. A higher response means the corresponding voxel is more likely to be
a skeleton.

General segmentation losses such as DiceLoss and TverskyLoss [22] focus on
the accuracy of all voxels while overlooking the connectivity of prediction. In
this paper, we propose a customized ℓ1 loss that penalizes breaks on skeleton
and thus encourages connectivity:

Lconn = LR + ωLP, where LR = M(∥X ′ − Y ∥1 + λ ∗ δ(Y − 0.5))/∥M∥,
LP = (1−M)∥X ′ − Y ∥1/∥1−M∥,

(2)

where δ(·) is the indicator function, ω and λ are weights of losses. The differen-
tiable ConnLoss is the weighted sum of the restoring loss LR and the preservation
loss LP. LR comprises two items: (1) the regular ℓ1 loss to guide the prediction
towards the target; and (2) an extra penalty for false negative voxels. LP main-
tains the integrity of non-break area while mitigating false positives. Due to the
extreme class imbalance, both LR and LP are normalized by their respective
sizes. Once training is complete, our model runs without additional user inter-
vention, thereby reducing uncertainty. During inference, we binarize the output
Y and apply the skeletonization algorithm [14] to obtain the final skeleton.

3 Experiments and Results

MSD Dataset. MSD [3] contains 303 CT volumes (242 for training and 61
for testing) with mask annotations for Vessel segmentation. In the test set, we
manually annotate all patches containing at least two endpoints. The annotation
of each patch is a quintuple (c,va,vb,v

∗
a,v

∗
b), where c is the binary break label,

(va,vb) and (v∗
a,v

∗
b) denote respectively the voxels of the two nearest endpoints

and manually verified endpoints. For the trade-off between annotation confidence
and the maximum break length, we set τ = 10 that works for most cases. After
the experts’ verification, there are 152 break patches and 143 non-break ones.

ODT Dataset. We collect 13 ODT volumes for 3D brain vasculature. The
dataset presents greater challenges due to severe noise and densely distributed
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capillaries. Consequently, there are more incomplete vessels while vascular an-
notation is prohibitively expensive. We observed that, despite heavy noise, the
Frangi filter [8] and skeletonization algorithm [14] produce satisfactory results
for most large and clear vessels, which are utilized for training. Additionally,
we annotate 600 patches randomly selected from four volumes using a simi-
lar procedure as MSD. Specifically, there are 154 Mid-breaks, 20 Tip-breaks, 13
Multi-breaks, 24 Bifur-breaks, and 389 patches without break. Additional details
regarding the dataset and annotation can be found in Suppl.

Implementation and Baselines. Our method is implemented on PyTorch
and trained using an NVIDIA 3090 GPU. All models are trained with the
Adam [13] optimizer for 200 epochs with a batch size of 240. The loss weights
ω and λ are set to 1.0 and 2.0 respectively. The initial learning rate is 10−3 and
halves if no improvement observed for 20 epochs. The input patch size is set
to 16 × 16 × 16 for MSD and 32 × 32 × 32 for ODT, based on their statistics
of breaks. All skeletons are acquired with the skeletonization method [14]. We
use napari [1] for visualization and Skan [18] for skeleton analysis. The distance
threshold τ is 10 for both datasets, as suggested by experts. We use the 3D Frangi
filter with scales ranging from 1 to 5 and a scale step of 0.5 to extract vessel
masks. The hyperparameters in the Frangi filter are set as α = 0.5, β = 0.5, and
γ = 15.0.

The “Distance-based" baseline simply detects breaks based on the distance
between two endpoints, and connects detected points with the shortest path.
Vess. Comp. [4] is the state-of-the-art skeleton completion approach that detects
breaks using both distance and curvature similarity. nnUNet [12] is a state-of-
the-art medical image segmentation model, and we convert its prediction into
skeletons for comparison. Hyperparameters are fine-tuned using grid search to
achieve optimal performance. nnUNet results on ODT are not reported due to
the lack of manual annotations for fine-tuning.

3.1 Quantitative Experiment

We define the following metrics for skeleton completion:

TP=Σici ∗ κ(v∗
a(i),v

∗
b(i)), FN=Σici ∗ (1− κ(v∗

a(i),v
∗
b(i))),

TN=Σi(1− ci) ∗ (1− κ(va(i),vb(i))), FP=Σi(1− ci) ∗ κ(va(i),vb(i)),
(3)

where i is the patch index, ci is its class label, and κ(va,vb) the connectivity
function that returns 1 if va and vb are connected and 0 otherwise. For a break
patch, the predicted skeleton is true positive if it connects the two manually-
verified endpoints v∗

a and v∗
b ; otherwise, it is false negative. For a patch without

break, the predicted skeleton is true negative if it does not connect the two near-
est endpoints va and vb; otherwise, it is false positive. Recall, precision, accuracy,
and F1 score are measured accordingly. Due to the significant imbalance in break
types, F1 score is preferred over other metrics. The point-to-point metrics [23]
requiring costly ground truth are beyond the scope of our work.
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Table 1: Performance (%) on the MSD and ODT datasets. Rec: recall; Prec: pre-
cision; Acc: accuracy. nnUNet∗ is skeletonized prediction of pretrained nnUNet.
nnUNet∗+Ours is our SSL model trained with the prediction of nnUNet.

MSD ODT
Rec Prec Acc F1 Rec Prec Acc F1

Distance-based 84.9 47.4 43.7 60.9 86.2 63.8 80.6 73.4
Vess. Comp. [4] 61.2 49.0 47.1 54.4 83.8 72.9 75.6 78.0
nnUNet∗ [12] 32.4 93.6 64.3 48.1 -
nnUNet∗+Ours 93.4 76.8 82.0 84.3 -
Ours 92.1 80.0 84.0 85.6 93.7 79.5 90.6 86.0

Table 2: Ablation study of the proposed skeleton
transformations on the MSD dataset.
RoI Shift Skel Slip Skel Shatter Accuracy F1

58.5 68.7
✓ 82.0 83.2

✓ 83.3 85.2
✓ ✓ 83.7 85.3
✓ ✓ ✓ 84.0 85.6

Table 3: Ablation study of
losses on the MSD dataset.

Loss Function F1
Skel Aug. ✓

Tverskyα=0.001 64.6 80.3
Normalized MSE 67.5 82.3
Normalized ℓ1 67.5 82.6

ConnLoss (Ours) 72.9 85.6

Tab. 1 reports the main results, and more details can be found in Suppl.
On MSD, our method significantly outperforms the other methods with accu-
racy of 84.0% and F1 score of 85.6%. Note that nnUNet is not designed for
break completion and encounters challenges in handling significant noise, result-
ing in relatively low recall. We also use imperfect skeletons from nnUNet to
train our self-supervised model, achieving a significant 17.7% improvement in
accuracy, thus validating the effectiveness of our method. On ODT, the mor-
phological properties are not guaranteed due to severe noises. As a result, the
Distance-based method and Vess. Comp. do not perform well. Additional exam-
ples illustrating the poor performance of these baseline methods can be found
in Suppl. Our method surpasses the state-of-the-art by 8.0% in F1 score. The
challenging Multi-breaks and Bifur-breaks bring two issues arise to rule-based
methods: (1) it is nontrivial to dynamically adjust the distance threshold, and
(2) the loop avoidance demands additional information such as skeleton indices.
In contrast, our method implicitly learns the skeleton structures without extra
input, achieving 92.3% and 70.8% precision on Multi-breaks and Bifur-breaks
respectively.
Ablation Study of Skeleton Transformations. Tab. 2 shows the abla-
tion study of the proposed skeleton transformations. The vanilla self-supervised
model has relatively low accuracy; both RoI Shift and Skel Slip significantly
boost the performance; and Skel Shatter achieves the best performance.
Ablation Study of Loss Functions. Tab. 3 reports the study of different
losses. Regular losses, including DiceLoss, MSE, and ℓ1 fail during the training
under the extremely imbalanced class ratio. By contrast, our ConnLoss outper-
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Fig. 4: Skeleton completion on MSD. (a) The volume with breaks, (b) Bifur-
break, (c) Multi-break and our results (in red). Bounding boxes indicate input.

Fig. 5: Hard case results. From left to right: input, Distance-based, Vess. Comp.,
ours, and reference ODT. Green: break; red: false positive; blue: false negative.

forms other losses, highlighting its superiority. Furthermore, the skeleton trans-
formations boost the performance for all losses. More analysis are in the Suppl.

3.2 Qualitative Experiment

Completion of Various Breaks on MSD. Fig. 4 illustrates examples of
skeleton completion on the MSD dataset. In Fig. 4a, disconnected skeletons are
encoded in different colors. There are five breaks and one non-break, marked with
red and yellow points respectively. Our model completes all five breaks without
significantly changing original structures. Skeleton reconstruction at bifurcations
is still a challenging task due to unpredictable branch numbers and morphology.
Fig. 4b illustrates that our model restores the bifurcation. Fig. 4c illustrates that
our model repairs a ruptured skeleton with multiple tiny fragments, indicating
that our model is able to discern such structures ignored by previous methods.
Challenging Cases. Fig. 5 illustrates four hard cases. The yellow, orange,
and cyan voxels are the prediction of Distance-based, Vess. Comp., and ours.
Fig. 5a contains two skeletons from separate vessels so it is not a break. However,
both Distance-based and Vess. Comp. produce false positives due to the close
proximity and similar shapes of the endpoints. In contrast, our method correctly
rejects it. In Fig. 5b, Distance-based wrongly connects the two nearest endpoints
and misses the real break, but our method precisely completes the break. In
Fig. 5c, only our method reconnects the large break. In Fig. 5d, Distance-based
incorrectly links the two nearest endpoints while ignoring the two breaks located
closely. Vess. Comp. rejects both breaks due to inconsistent curvatures. Our
method restores both breaks, showing the capability for handling complex cases.
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4 Conclusion

We propose a self-supervised solution for 3D vasculature reconnection. Our so-
lution is highlighted by three novel skeleton transformations to address the sig-
nificant imbalance among different types of skeleton breaks during the sample
synthesis. Moreover, a novel connectivity loss is designed for further improve-
ment. Experiments on two real-world datasets show clearly the effectiveness of
our method.
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