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Abstract. Image segmentation often involves objects of interest that
are biologically known to be convex shaped. While typical deep-neural-
networks (DNNs) for object segmentation ignore object properties relat-
ing to shape, the DNNs that employ shape information fail to enforce
hard constraints on shape. We design a brand-new DNN framework that
guarantees convexity of the output object-segment by leveraging funda-
mental geometrical insights into the boundaries of convex-shaped ob-
jects. Moreover, we design our framework to build on typical existing
DNNs for per-pixel segmentation, while maintaining simplicity in loss-
term formulation and maintaining frugality in model size and training
time. Results using six publicly available datasets demonstrates that our
DNN framework, with little overheads, provides significant benefits in
the robust segmentation of convex objects in out-of-distribution images.
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1 Introduction and Related Work

Biomedical image segmentation often involves an object/segment of interest that
is convex shaped, e.g., (i) the regions bounded by the epicardium or by the
endocardium in short-axis cardiac-MRI slices [7, 18, 23, 31] and (ii) the optic
disc in retinal fundus images [29, 15]. Deep neural networks (DNNs) have been
very effective in semantic image segmentation, e.g., several variants of UNet [20]
employing attention gates [12, 17], residual connections [12, 34], and squeeze-and-
excitation blocks and spatial pyramidal pooling [12]. Recently, [14] proposed a
large DNN model adding hierarchical swin transformers within the encoder and
the decoder of its UNet. Some DNNs [19, 10] use object-boundary related loss
terms to improve predictions near object boundaries. However, none of these
methods enforce any prior or constraint on object geometry or shape.

Some early segmentation methods impose hard shape constraints on seg-
ments [9, 21], but use hand-crafted features within graph-cut frameworks, unlike
DNNs that learn complex and task-optimized image features. Some DNNs in-
fuse shape priors within object segmentation, e.g., [16] promotes star-like shapes
for skin-lesion segmentation, [33, 31] promote shape properties in the optic-disc
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and epicardium segmentation, and [24] use a statistical shape prior for robust
segmentation.

While these DNN-based shape priors can improve robustness to degradations,
they fail to enforce any hard constraint on object geometry.

Some recent DNNs [11, 13, 25, 6] promote topological properties in segmenta-
tions by penalizing topological errors during training. TopoNet [11] works only
on small patch sizes (65×65 pixels used by [11]), because its loss term relies on
matching based on persistent homology, which, in their words, is “too complex
and prone to errors”. TeTrIS [13] starts with a candidate shape that is topologi-
cally correct and then deforms it to match the data, but this can be ineffective
when the candidate shape has incorrect topology or when the deformation lead
to incorrect topology. clDice [25] uses a loss term penalizing topological errors in
tubular vessel structures. [6] train a DNN using a topological prior in terms of the
Betti numbers, where the prior helps DNN learning in challenging tasks. None
of these DNNs reliably enforce any hard topological or geometrical constraint.
Some very recent work [30, 8] enforces star-like shapes but doesnot guarantee
convexity.

Most of the methods for semantic segmentation evaluate their performance
on a test set that has the same distribution as the training set. However, in
biomedical imaging applications, at the time of deployment, the distribution of
test images can differ from the distribution of training images because of several
reasons. Such out-of-distribution (OOD) images [26, 36, 32] can occur because of
variability in imaging equipment, clinical protocols, acquisition errors and arti-
facts, pathologies, and human errors. For such OOD images, typical DNNs lack
robustness [22] to produce high-quality segmentations. Some methods like [24]
incorporate shape information to improve segmentation quality for the appli-
cations where the training as well as the test images are noisy. However, such
methods cannot guarantee object shape to have a specific geometry/shape prop-
erty, e.g., convexity. In contrast, our framework leads to significant robustness
to OOD variations while guaranteeing object-segment convexity.

This paper makes many contributions. We propose a novel DNN framework
for segmenting a convex-shaped object in a 2D image, where our DNN parame-
terization guarantees the output object-segment to be convex. Our DNN design
(i) leverages key geometrical insights into the boundaries of convex-shaped ob-
jects, (ii) can use image-based features from any existing DNN for per-pixel
image segmentation, and (iii) maintains simplicity in loss-term formulation and
maintains frugality in DNN size and training time. Results using six publicly
available datasets show that our framework, with little overheads, provides sig-
nificant benefits in the robust segmentation of convex objects in OOD images.

2 Proposed Method

Our DNN for object segmentation guarantees the convexity of its output seg-
ment using a novel parameterization. It leverages the geometric principle that
the boundary of a convex set/segment is a convex curve [5]. We denote spatial
coordinates in 2D by Z := (X,Y ) with abscissa X ∈ R and ordinate Y ∈ R.
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Fig. 1. Our DNN Design for Hard Convexity Constraint on Object Segment.
Decoder* is without the final activation layer.

2.1 Geometric Modeling of a Convex-Segment Boundary

The DNN models the entire object boundary (Figure 1) as a combination of two
boundary parts, and then enforces segment-convexity related constrains on each
part. These boundary parts are determined by any pair of parallel supporting
lines [5] in the image domain, e.g., two horizontal supporting lines indicate the
bottom-most and top-most points (Z0, ZN ) on the object boundary, partitioning
the boundary into a left and a right part. Such supporting lines can be easily
provided by a user quickly providing the object’s extremities in the vertical
direction, or by a separate simple DNN trained for this task. If a supporting line
touches the boundary over an interval where the boundary has zero curvature,
then our DNN only models the boundary parts excluding this interval.

The DNN models the abscissas of the boundary parts on the left and right
(XL and XR) as, respectively, convex and concave functions of the ordinate Y .
The DNN models each boundary part as piecewise linear; in this paper, N := 16
pieces gave sufficient accuracy. Let the points on the left boundary, in sequence
going from bottom to top, be Z0, Z

L
1 , Z

L
2 , · · · , ZN . If we consider the directions

of any ordered pair of line-segment vectors, e.g.,
#         »

Z0Z
L
1 and

#           »

ZL
1 Z

L
2 , then the

direction of the second vector typically undergoes a clockwise rotation of the
first, and never an anti-clockwise rotation. Similarly, while going from Z0 to
ZN along the right-boundary, the curve typically turns anti-clockwise and never
clockwise. Thus, starting with Z0, along each boundary, our DNN constrains
each turn so that (i) it is never in the wrong direction and (ii) the amount of
turn is upper bounded to ensure the feasibility of all future turns. Given Z0 and
ZN , we design two DNN components to produce estimates of the piecewise-linear
boundaries on the left and right through {ẐL

i }
N−1
i=1 and {ẐR

i }N−1
i=1 , respectively.

2.2 DNN Architecture Guaranteeing Segment Convexity

We design a novel DNN architecture to estimate the boundary points on the
left-boundary curve and the right-boundary curve, as modeled in Section 2.1, to
guarantee the convexity of the resulting segment. Given the initial and final coor-
dinates Z0 and ZN , we propose to estimate the coordinates for each curve in the
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sequence ẐL
1 , · · · , ẐL

N−1 and ẐR
1 , · · · , ẐR

N−1 where the i-th coordinate’s estimate
on a curve (ẐL

i or ẐR
i ) is informed by the previously estimated coordinates (for

i′ < i) on that curve. Let the ordinates separating the N pieces on each curve be
Y0 < Y1 < · · · < YN−1 < YN , which are equi-spaced and fixed. Then, we fix the
ordinate estimates as Ŷ L

i := Ŷ R
i := Yi,∀i, and train the DNN to estimate the

abscissas {X̂L
i }

N−1
i=1 and {X̂R

i }N−1
i=1 sequentially to guarantee segment convexity.

For ordinate Y0, let X̂L
0 := X̂R

0 := X0. On the line segment Z0ZN , let the
point with ordinate Y1 have abscissa X̂Lmax

1 . Then, for ordinate Y1, our DNN
guarantees that its abscissa estimate X̂L

1 is upper-bounded by X̂Lmax
1 and lower-

bounded by X̂Lmin
1 := 0 (where abscissa 0 corresponds to the image boundary

on the left). For ordinate Y2, given Z0 and ẐL
1 , the DNN guarantees that its

estimate X̂L
2 lies within the interval (X̂Lmin

2 , X̂Lmax
2 ) where (i) X̂Lmin

2 is the

abscissa at the intersection of the extension of
#         »

Z0Ẑ
L
1 with the horizontal line

through ordinate Y2 and (ii) X̂Lmax
2 is the abscissa at the intersection of the

line segment ẐL
1 ZN with the horizontal line through ordinate Y2. Thus, we se-

quentially define X̂Lmin
i := f(X̂L

i−1, X̂
L
i−2;Yi, Yi−1, Yi−2) for 2 ≤ i ≤ N − 1, and

X̂Lmax
i := g(X̂L

i−1;ZN , Yi, Yi−1) for 1 ≤ i ≤ N − 1, where functions f(·) and g(·)
compute the aforementioned intersections as linear functions of their arguments.

To estimate the boundary points, the DNN leverages image-based features
F (detailed next) and transforms them through a linear layer followed by an
activation function, together modeled by ALL

i (F ; θLi ), with the output range
(0, 1) and parameterized by θLi . Then, we scale and shift ALL

i (F ; θLi ) that lies
within (0, 1) to estimate the abscissa X̂L

i guaranteed to be within the interval
(X̂Lmin

2 , X̂Lmax
2 ). Let the function TS(u; s, t) := su+t model scaling the input u ∈

R by s ∈ R and then applying a shift by t ∈ R. Then, the DNN estimate of the
abscissa is X̂L

i := TS(ALL
i (F ; θLi ); X̂

Lmax
i − X̂Lmin

i , X̂Lmin
i ). Figure 1 combines

the actions of the functions f(·), g(·), and TS(·) into a function that predicts
the i-th boundary-point abscissa denoted by BAL

i (ALL
i (F ; θLi ), X̂

L
i−1, X̂

L
i−2).

Analogously, for the right boundary, we define X̂R
0 := X0, and sequentially

estimate each boundary-point abscissa by first estimating its lower and upper
bound as X̂Rmin

i := g(ẐR
i−1;ZN , Yi) where 1 ≤ i ≤ N − 1 and X̂Rmax

i :=

f(ẐR
i−1, Ẑ

R
i−2;Yi) where 2 ≤ i ≤ N − 1, and then estimating the abscissa it-

self as BAR
i (ALR

i (F ; θRi ), Ẑ
R
i−1, Ẑ

R
i−2). Let θL := ∪N−1

i=1 θLi and θR := ∪N−1
i=1 θRi .

We propose to design the image features F by leveraging the decoder of any
existing probabilistic per-pixel segmenter DNN, e.g., a UNet. For the per-pixel
segmenter, (i) let E(·; θE) model the encoder, parameterized by θE , mapping the
input image to a latent vector; (ii) let D(·; θD), parameterized by θD, model a
mapping from the latent vector to the features produced at the decoder’s last
layer; and (iii) let mapping S(·; θS), parameterized by θS , model an activation
function producing the final per-pixel probabilities. For the boundary-estimator
DNN component, let B(·; θB), parameterized by θB := θL∪ θR, map the decoder
features F to the left and right boundary abscissas. Let θ := θE ∪ θD ∪ θS ∪ θB.
For input image I, (i) the features are F := D(E(I; θE); θD); (ii) the segmenter’s
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output probability-map is P̂ (I; θ) := S(F ; θS); and (iii) the convex-boundary
output by the boundary predictor has abscissa estimates X̂(I; θ) := B(F ; θB).

2.3 Graduated Optimization Formulation and Strategy

The training set comprises J triples T := {(Ij , P j , Xj)}Jj=1, where Ij is an
input image, P j is its per-pixel (binary) segmentation image, and Xj is the
vector of abscissas of all boundary points (left and right both) for the chosen
grid-ordinate values. The training minimizes the sum of the loss functions for the
probabilistic per-pixel segmentation and the boundary estimation as L(T ; θ) :=∑J

j=1 ∥X̂(Ij ; θ)−Xj∥1+SoftDice(P̂ (Ij ; θ), P j), where ∥ · ∥1 is the L1 norm and
SoftDice is the soft version of the Dice similarity coefficient. Training uses a
3-phase strategy: (i) train only the per-pixel segmenter using only the SoftDice
loss to optimize θE ∪ θD ∪ θS ; (ii) keeping θE ∪ θD ∪ θS fixed, train only the
boundary predictor using only the L1 loss to optimize θB; (iii) train the entire
DNN over θ using both loss terms. While training the boundary predictor, we
find that the following two-pass (graduated-optimization) training strategy leads
to faster training and better results: (i) first relax the convexity constraint by
scaling and shifting ALL

i (F ; θLi ) ∈ (0, 1) to estimate the abscissa X̂L
i within a

relaxed interval (X̂Lmin
2 −∆, X̂Lmax

2 +∆), where ∆ > 0 is a small value compared
to the interval length |X̂Lmax

2 − X̂Lmin
2 | (we use ∆ as 10% of the interval length),

and (ii) then warm-start and enforce the convexity guarantee by setting ∆ → 0.

3 Results and Discussion

Datasets. We use 3 short-axis cardiac MRI datasets: CAP [27], ACDC [4],
A-CMRI [2]. We use the CAP dataset for training, validation (to tune free pa-
rameters), and testing (60%:15%:25% split); we use the ACDC and A-CMRI
datasets for OOD testing, where in 50% of the images, we introduce slight Rician
noise and slight spike artifacts [36]. We use 3 retinal-image datasets: Magrabi [1],
ORIGA [35], G1020 [3]. We use the Magrabi dataset for training, validation, and
testing (60%:15%:25% split); we use ORIGA and G1020 for OOD testing.

Methods. We compare with 9 existing methods: UNet [20], AttnUNet [17],
ResUNet++ [34] (each using soft-Dice loss); UNet+DoU, AttnUNet+DoU, Re-
sUNet+++DoU adding a boundary-based loss [28] to the UNet-based versions;
UNet+Topo [6] adding a topology-promoting loss to the UNet; BASNet [19] with
boundary-aware losses; DS-TransUNet [14] adding dual swin transformers to the
UNet. We extend each of the first 3 methods using our framework guaranteeing
segment convexity, to give cUNet, cAttnUNet, and cResUNet++; our methods
take the final output from the convexity-guaranteeing boundary predictor (and
not the segmenter). During the testing phase, we determine whether each pixel
lies inside or outside the boundary of the boundary-predictor. Using the interior
segment, we compute the Hausdorff-95 (HD95) and Average Surface Distance
(HDavg) from the per-pixel segmentation. All methods train using Adam on
images that are cropped (for a fair comparison) to a region limited by the left
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Models ↓ CAP ACDC A-CMRI Magrabi ORIGA G1020
Time mean (s.d.) mean (s.d.) mean (s.d.) Time mean (s.d.) mean (s.d.) mean (s.d.)

UNet
# params 7.8M

0.3
8.2

3.0 (1.4)
1.0 (0.4)

20 (4.9)
8.3 (2.2)

22 (5.8)
9.4 (2.8)

0.1
6.6

6.5 (2.5)
2.6 (1.1)

15.3 (2.8)
8.0 (1.6)

17.8 (4.2)
9.0 (2.3)

UNet+DoU
# params 7.8M

0.3
8.1

2.7 (2.1)
1.0 (0.6)

86 (22)
47 (11.7)

90 (22.8)
35 (11.9)

0.2
6.7

1.0 (0.3)
0.3 (0.2)

14.7 (4.8)
6.5 (1.6)

18 (6.8)
7.8 (2.7)

UNet+Topo
# params 7.8M

16.1
8.3

3.0 (1.4)
1.0 (0.4)

15.6 (3.2)
6.3 (2.1)

17.4 (4.3)
7.4 (1.9)

15.1
6.8

6.5 (2.5)
2.6 (1.1)

13.7 (1.1)
6.1 (0.7)

14.3 (2.7)
6.4 (1.2)

cUNet (Ours)
# params 9.2M

0.9
21

4.4 (1.8)
1.5 (0.6)

6.4 (1.6)
2.1 (0.5)

6.1 (1.4)
2.1 (0.5)

0.7
21.9

1.5 (0.4)
0.5 (0.0)

6.6 (2.3)
2.6 (0.8)

8.9 (2.76)
3.3 (0.9)

AttnUNet
# params 35M

0.4
15

3.8 (1.3)
1.3 (0.5)

9.0 (1.7)
3.4 (0.8)

9.6 (2.1)
3.6 (0.9)

0.3
11.4

7.3 (3.0)
2.9 (1.3)

13.7 (2.9)
7.1 (1.7)

17.2 (5.0)
8.6 (2.5)

AttnUNet+DoU
# params 35M

0.4
14

2.3 (1.1)
0.8 (0.3)

10.2 (3.0)
4.5 (1.3)

9.4 (2.4)
4.1 (1.0)

0.3
11.4

1.0 (0.0)
0.2 (0.0)

11.0 (2.2)
5.0 (1.2)

12.6 (3.8)
5.9 (1.7)

cAttnUNet (Ours)
# params 36M

1.7
33

4.0 (1.5)
1.3 (0.4)

6.5 (1.7)
2.2 (0.6)

6.4 (1.6)
2.2 (0.5)

1.9
27.9

2.3 (0.7)
0.9 (0.2)

5.5 (1.0)
2.2 (0.5)

7.4 (1.2)
3.0 (0.6)

ResUNet++
# params 4.1M

0.2
12

2.8 (1.0)
1.0 (0.4)

32 (8.0)
12.3 (3.0)

28 (7.5)
10.6 (2.8)

0.1
11.7

1.2 (0.4)
0.5 (0.0)

8.7 (2.6)
3.5 (1.1)

11.5 (4.3)
4.7 (1.7)

ResUNet+++DoU
# params 4.1M

0.3
13

2.2 (0.8)
0.8 (0.4)

40 (9.0)
17 (4.4)

37 (11)
13.9 (4.1)

0.2
12.5

1.0 (0.0)
0.3 (0.0)

6.3 (2.5)
2.5 (0.9)

11.7 (7.7)
4.6 (2.6)

cResUNet++ (Ours)
# params 5.5M

1.0
24

4.4 (1.6)
1.5 (0.6)

5.7 (1.0)
2.0 (0.4)

5.6 (1.0)
2.0 (0.4)

1.0
25.6

2.4 (0.7)
0.9 (0.2)

6.1 (2.7)
2.5 (1.1)

8.8 (3.0)
3.3 (1.0)

BASNet*
# params 174M

1.3
31

2.5 (1.1)
0.9 (0.4)

6.9 (1.5)
2.5 (0.6)

8.0 (2.2)
3.2 (0.9)

1.2
25.6

3.0 (1.6)
1.3 (0.8)

6.9 (1.6)
3.4 (1.0)

10.5 (2.3)
4.9 (1.3)

DS-TransUNet*
# params 171M

10
143

2.4 (1.1)
0.8 (0.3)

7.1 (1.7)
2.6 (0.6)

8.2 (2.2)
3.1 (0.9)

8.6
151

1.0 (0.0)
0.1 (0.0)

11.0 (2.2)
5.4 (1.4)

13.6 (3.0)
6.7 (1.8)

Fig. 2. Results: Epicardium in Cardiac MRI; Optic Disc in Retinal Images.
In boxes in Time column, first row shows training time (hours); second row shows
inference time per image (milliseconds). In other boxes, first row shows mean (and
standard deviation) of HD95; second row shows those for HDavg; colored values (in
blue) indicate a statistically significant improvement over all baseline methods based on
a t-test. For BASNet and DS-TransUNet, * indicates pre-training with ImageNet1K.

and right extremities of the object (indicated by vertical parallel supporting
lines provided to all methods). Performance measurement uses the distribution
of inter-boundary (predicted-vs-true) distances (as done for Hausdorff distance),
in pixel units, in terms of the average (termed HDavg) and the 95-th percentile
(termed HD95).

Results: OOD Data. First, for OOD test images in cardiac MRI (ACDC,
A-CMRI) and retinal images (ORIGA, G1020), our 3 methods (cUNet, cAtt-
nUNet, cResUNet++), each guaranteeing a convex segment shape, greatly out-
perform their corresponding baselines (Figure 2; Figure 3, Figure 4), (i) in
their original form (UNet, AttnUNet, ResUNet++) as well as (ii) their ver-
sions incorporating a boundary-based loss (UNet+DoU, AttnUNet+DoU, Re-
sUNet+++DoU), with only one exception indicated in light blue (Figure 2)
where ResUNet+++DoU performs close to our cResUNet++. Second, the 6
baseline versions of UNet, AttnUNet, ResUNet++, UNet+DoU, AttnUNet+DoU,
and ResUNet+++DoU all typically lead to implausible object shapes with large
errors, unlike our convexity-guaranteeing DNNs (cUNet, cAttnUNet, cResUNet++).
Third, tuning UNet+Topo’s free parameter (weighting likelihood and prior) us-
ing in-distribution images, where UNet itself gives good topologically-correct
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(a1) 4.0, 4.1 (b1) 22.0, 9.2 (c1) 27.4, 7.0 (d1) 23.2, 13.4 (e1) 32.0, 9.0
4.0, 2.2 27.3, 5.0 38.1, 5.4 11.3, 4.1 27.0, 5.6

(a2) 3.0, 3.0 (b2) 21.9, 7.8 (c2) 82.7, 7.0 (d2) 22.6, 11.7 (e2) 161.5, 7.6
3.0, 2.2 28.9, 5.0 37.0, 5.4 18.3, 4.1 51.0, 5.6

(a3) 5.0, 3.6 (b3) 7.2, 6.3 (c3) 5.0, 6.4 (d3) 11.1, 10.4 (e3) 8.0, 8.0
4.0, 2.2 16.0, 5.0 14.9, 5.4 23.2, 4.1 14.2, 5.6

Fig. 3. Results: Epicardium. (a1)–(a3) In-distribution test image from CAP
dataset. (b1)–(b3) OOD test image from ACDC dataset. (c1)–(c3) OOD test
image after slight-degradation on ACDC dataset. (d1)–(d3) OOD test image
from A-CMRI dataset. (e1)–(e3) OOD test image after slight-degradation on A-
CMRI dataset. All images show color-coded segment boundaries from cResUNet++
(ours) and ground-truth. (a1)–(e1) also show segment boundaries from UNet, Att-
nUNet, ResUNet++. (a2)–(e2) also show segment boundaries from UNet+DoU, Att-
nUNet+DoU, ResUNet+++DoU. (a3)–(e3) also show segment boundaries from BAS-
Net, UNet+Topo, DS-TransUNet. HD95 values are shown below, colored consistently.

results, is ineffective for OOD data. So, in this paper, UNet+Topo results for
OOD data use parameter tuning on an OOD validation set, which is unfair to all
other methods; even so, while UNet+Topo improves over UNet on OOD data,
it takes 18× longer to train, still leads to implausible shapes, and is unable to
improve over cUNet. Fourth, each one of our 3 methods (cUNet, cAttnUNet,
cResUNet++) almost always greatly outperforms every one of the aforemen-
tioned 7 UNet-based baselines. Fifth, our 3 methods also improve over BASNet
and DS-TransUNet despite the latter two using (i) 5-32× larger DNNs, (ii) pre-
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(a1) 8.5, 10.8 (b1) 15.5, 15.5 (c1) 11.2, 9.8 (d1) 16.4, 21.3 (e1) 20.5, 17.5
2.0, 2.8 7.3, 5.0 6.7, 3.0 14.4, 4.2 12.5, 5.7

(a2) 1.0, 1.0 (b2) 18.8, 9.4 (c2) 13.0, 10.8 (d2) 14.2, 12.8 (e2) 26.7, 10.6
1.0, 2.8 5.0, 5.0 5.0, 3.0 13.4, 4.2 10.4, 5.7

(a3) 6.0, 1.0 (b3) 5.4, 9.2 (c3) 5.8, 9.8 (d3) 12.2, 14.5 (e3) 11.2, 14.8
8.5, 2.8 9.0, 5.0 11.2, 3.0 13.6, 4.2 16.3, 5.7

Fig. 4. Results: Optic Disc. (a1)–(a3) In-distribution test image from Magrabi
dataset. (b1)–(b3) and (c1)–(c3) Two OOD test images from ORIGA dataset.
(d1)–(d3) and (e1)–(e3) Two OOD test images from G1020 dataset. All im-
ages show color-coded segment boundaries from cResUNet++ (ours) and ground-
truth. (a1)–(e1) also show segment boundaries from UNet, AttnUNet, ResUNet++.
(a2)–(e3) also show segment boundaries from UNet+DoU, AttnUNet+DoU, Re-
sUNet+++DoU. (a3)–(e3) also show segment boundaries from BASNet, DS-
TransUNet, UNet+Topo. HD95 values are shown below, colored consistently.

training using the large ImageNet1K dataset, and (iii) 6-10× more time to train;
DS-TransUNet is also 4-6× slower during testing. As expected, BASNet and
DS-TransUNet do improve over the 7 UNet-based baselines and mostly (but not
always) lead to plausible and close-to-convex shapes.

Results: In-distribution Data. For CAP and Magrabi test images, all 9
existing methods perform comparably and statistically better than our 3 meth-
ods, but our errors remain small in magnitude while guaranteeing convexity.

Conclusion. This paper proposes a DNN framework for segmenting a convex-
shaped object in a 2D image. It leverages fundamental properties of the bound-
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aries of convex segments, and designs a DNN regressor that is parameterized to
output a boundary corresponding to a convex segment. Our framework can lever-
age image-based features from any existing DNN for per-pixel image segmenta-
tion, maintains simplicity in loss-term formulation, and maintains frugality in
DNN size. A minor limitation of our work is that the boundary-prediction block
increases training and testing times compared to baseline models. Additionally,
creating supporting lines at test time, which requires another DNN, introduces
further complexity. To ensure a fair comparison, this method is used across all
approaches. However, our per-image test time remains within 30 milliseconds
on an Nvidia RTX2080Ti GPU, enabling real-time processing. Results using 6
publicly available datasets and 9 baseline methods show that our DNN frame-
work provides significant benefits in the robust segmentation of convex objects
in OOD images.
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