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Abstract. Federated learning has recently developed into a pivotal dis-
tributed learning paradigm, wherein a server aggregates numerous client-
trained models into a global model without accessing any client data di-
rectly. It is acknowledged that the impact of statistical heterogeneity in
client local data on the pace of global model convergence, but it is of-
ten underestimated that this heterogeneity also engenders a biased global
model with notable variance in accuracy across clients. Contextually, the
prevalent solutions entail modifying the optimization objective. However,
these solutions often overlook implicit relationships, such as the pairwise
distances of site data distributions, which makes pairwise exclusive or
synergistic optimization among client models. Such optimization con-
flicts compromise the efficacy of earlier methods, leading to performance
imbalance or even negative transfer. To tackle this issue, we propose a
novel aggregation strategy called Collaboration Graph-based Reinforce-
ment Learning (FedGraphRL). By deploying a reinforcement learning
(RL) agent equipped with a multi-layer adaptive graph convolutional
network (AGCN) on the server-side, we can learn a collaboration graph
from client state vectors, revealing the collaborative relationships among
clients during optimization. Guided by an introduced reward that bal-
ances fairness and performance, the agent allocates aggregation weights,
thereby promoting automated decision-making and improvements in fair-
ness. The experimental results on two real-world multi-center medical
datasets suggest the effectiveness and superiority of the proposed Fed-
GraphRL.

Keywords: Federated learning · Performance fairness · Collaboration
graph · Reinforcement learning.
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1 Introduction

The advent of deep learning has profoundly transformed the domain of medi-
cal image analysis, primarily due to the proliferation of large-scale clinical data
sets [17,26,23,19]. However, privacy concerns from patients and institutions pre-
vent centralized training from accessing the data across multiple centers [9,14].
Federated learning (FL) [20,4] thereby emerges as an effective solution that pre-
serves privacy by distributing the model to data sources to train a global model
without sharing their data directly. Nevertheless, conventional FL methods tar-
get minimizing an aggregated loss, potentially leading to biased model perfor-
mance where accuracy loss may be borne unequally among clients [21,15] due
to the statistical heterogeneity.

Fair federated learning (FFL) has become an important area of research to
address the problem of client bias mentioned above. In FFL, the collection of gra-
dients is a key way to balance the principles of utilitarianism and egalitarianism.
Current FFL methods can be categorized into three groups. Gradient-based
methods [27,7] identify an improved global gradient by minimizing local gradient
discrepancy among clients. Although effective, these methods cannot guarantee
the prevention of local performance decline when more than two clients are
involved. Objective function-based methods reweight and minimize the ag-
gregate loss according to the client’s loss magnitude. [21] utilizes the min-max
approach to safeguard the least performing clients, at the expense of compromis-
ing the adaptability of the optimization goal and consequently reducing overall
performance. [15,13,28,6] propose a more flexible optimization objective that can
be adjusted according to the desired fairness level. Unfortunately, these strate-
gies neglect the implicit relationships among diverse clients, such as pairwise
distances of site data distributions [2], which makes the optimization of client
models either mutually exclusive or favorable. Even when loss magnitudes are
nearly balanced (objective function-based methods fail), optimization conflicts
can still result in performance unfairness or even negative transfer, thereby com-
promising optimization effectiveness. Client contribution estimation-based
methods [8] assess the relative contributions of individual clients to determine
aggregation weights. Nevertheless, these one-to-many constraint relations do not
fully capture the pairwise implicit relationships among clients.

Recognizing that client relationships are highly interdependent, we suggest
modeling the pairwise constraint relationships between clients using a collabora-
tion graph. Utilizing this graph-based design rationale, we propose a novel aggre-
gation strategy for FFL - the collaboration graph-based reinforcement learning
(FedGraphRL). This strategy seeks to guide managing model optimization
conflicts among clients in FFL through optimizing the collaboration graph. A
reinforcement learning (RL) agent, reinforced with a multi-layer adaptive graph
convolutional neural network (AGCN), is deployed server-side to learn a collab-
oration graph from client state vectors. Nodes in this graph represent clients,
while edge weights indicate the intensity of collaboration between two clients.
A reward function is also introduced to strike a balance between model perfor-
mance and fairness. Using this function, the proposed FedGraphRL agent ex-
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Fig. 1. The framework of (a) the federated learning system which has five stages, and
(b) FedGraphRL agent with multi-layer AGCN on the server side. Ãctions are actions
predicted by the actor before softmax normalization.

tracts pertinent features from the collaboration graph to automatically allocate
aggregation weights. To verify our approach, we conducted comparative exper-
iments on two real-world multi-center medical image datasets. The experiment
results demonstrate the superiority of the proposed model and the effectiveness
of each component.

Our contributions are three-fold. (1) We introduce a collaboration graph,
which represents the pairwise relationships among clients, to map out each
client’s collaborative relationships and enhance optimization outcomes. (2) We
employ a learning-based optimization algorithm to allocate aggregation weights
and balance performance and fairness. (3) Our experimental results indicate that
the proposed method, which avoids compromising the performance of certain
clients, could be a valuable asset to encourage more medical centers to engage
in FL research.

2 Method

2.1 Problem Formalization and Method Overview

Given an FL system that involves m hospitals/clients, the i-th client has a lo-
cal dataset Di = {xj

i , y
j
i }

ni
j=1 sampled from a distribution Pi, where xj

i and yji
represent the input and label, respectively. Due to the data heterogeneity across
different medical centers, the data distributions {Pi}mi=1 are non-independent
identically distribution (non-iid). Let Fk denote the task loss function of the
client k, and φ(·) is a function aggregating local objectives. A fair FL system
aims to minimize the objective function minw φ(F1(w), ...Fm(w)) while ensuring
that the global model w provides a more equitable solution by achieving uniform
performance across all m clients. To tackle this optimization problem, our goal is
to clarify the optimization conflict relationships between clients through a learn-
able collaboration graph, thereby devising a more equitable and precise aggrega-
tion strategy φ(·). The framework of FedGraphRL contains two components: a
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learning-based adaptive aggregation mechanism, and an AGCN component that
embeds a collaboration graph into the optimization loop (see Fig. 1). We now
delve into the details of each component.

2.2 Learning-based Adaptive Aggregation Mechanism

RL agents have been extensively utilized in FL for tasks such as client selec-
tion [29] and resource allocation [25], aiming for automated decision-making
across various FL environments. We are dedicated to proposing a training method
for agents that balances performance and fairness in FL. An off-policy actor-critic
RL approach DDPG [16] is adopted, where the actor seeks the optimal aggrega-
tion strategy, and the critic evaluates the quality of the aggregation strategy.
State Space. In the topological graph G, which includes m clients, the system’s
state is a tuple of 2 ×m parameters. Specifically, the state of client k at round
t is denoted as St,k = (lgt,k, l

l
t,k), where the ensemble of states at round t, St,

consists of {St,1, St,2, . . . , St,m}. lgt,k denotes the kth client’s validation set loss of
the global model distributed by the server in round t, reflecting the inter-client
data correlation and the global model’s capacity to adjust to each client’s data.
llt,k signifies the validation set loss of the kth client after local training in round
t, which reflects each client’s quality of the data and the model performance.
Action Space. We utilize a continuous action space to determine the magni-
tude of aggregation weights. The action At is a tuple of m parameters, At =
{αt,1, ..., αt,m}. Given the actor network output at,k and a Gaussian noise term
N for balancing exploration and exploitation [16], the agent then determines the
aggregation weight αt,k for client k as

αt,k = Softmax(at,k +N ). (1)

Reward. The ultimate goal of the agent is to maximize the total reward G =∑T
t=1 γ

t−1Rt, where γ is the discount factor, and Rt is the immediate reward
given by the FL system after the aggregation in round t. Following the principle
of simplicity in reward design, we define Rt as

Rt =
Lt−1 − Lt

Lbase
. (2)

where Rt is calculated as the aggregate loss difference between rounds t− 1 and
t, normalized by the aggregate loss of the initial round Lbase. The aggregate
loss Lt can evaluate both the system’s performance and fairness simultaneously,
formulated as

Lt =
m∑

k=1

pk
q + 1

lq+1
t,k (w), (3)

where pk indicates the data quantity proportion of client k within the entire FL
system, lt,k(·) corresponds to the state component lgt,k. Following [15], we use q
to adjust the fairness level. Our approach is flexible and can be integrated with
the objective functions of mainstream FFL to configure the reward function.
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Algorithm 1 Overall Flow of FedGraphRL.
Input: A server with an w0-parameterized global model, learning rate η, local

step κ, m clients with separated datasets, maximum communication round T , θ-
parameterized main critic network Q and ϕ-parameterized main actor network µ,
target networks Q′, µ′ as copies of Q and µ, replay buffer P , warm-up rounds W ,
soft main-target update factor ρ;
for round t = 0 to T − 1 do

Server broadcasts global model wt

Local:
for client k = 1 to m in parallel do

wt,k ← wt

lgt,k ←Inference loss with wt,k

Local training in κ epochs:
wt,k ← wt,k − η∇Fi(wt,k)
llt,k ← Inference loss with wt,k

Send St,k = (lgt,k, l
l
t,k) and wt,k

to the server
end for
Server:
Concatenates St,k to form St

Computes reward Rt−1

Stores (St−1, At−1, Rt−1, St) into P
At ← ServerActionChoose(St)
Performs weighted aggregation

wt+1 =
m∑

k=1

αt,k · wt,k

end for

Function: ServerActionChoose(St)
if round < W then

Randomly sample an action Ãt

else
ServerAgentTrain(P )
Select action Ãt = µ(St) +N

end if
Computes aggregation weights
At ← softmax(Ãt)

return At

Function: ServerAgentTrain(P )
Sample a batch B = (Ŝ, Â, R̂, Ŝ′) ∼ P

Compute targets:
y(R̂, Ŝ′)← R̂+ γQ′(Ŝ′, µ′(Ŝ′));

Update Q with gradient descent:
∇θ

1
|B|

∑
(S,A,R,S′)∈B(Q(S,A)− y(R,S′))2;

Update µ with gradient ascent:
∇ϕ

1
|B|

∑
S∈B Q(S, µ(S));

Update target networks with:
ϕ′ ← ρϕ′ + (1− ρ)ϕ, θ ← ρθ′ + (1− ρ)θ;

return µ

2.3 Enhancing RL Agent with Adaptive Graph Convolutional
Neural Network

Collaboration Graph Feature Extraction. To embed graph adjacency in-
formation into the optimization loop, we utilize AGCN to process the collab-
oration graph within the RL agent. As shown in Fig. 1 (b), two-layer AGCN
computes each client’s hidden representation by aggregating the feature vectors
of its neighbors, allowing nodes/clients to receive information from both nearby
and distant nodes. The AGCN layer can be represented as

H(l+1) = σ(ÃH(l)Θ(l) + b(l)), (4)

where Ã is the Laplacian matrix for spectral convolution [12], and Θ(l) and b(l)

are the layer-specific weight and bias. σ(·) is the activation function ReLU(·).
H(l) ∈ Rm×d represents the hidden features of the lth layer (m: number of nodes,
d: feature dimension). H(0) is the state vector input into the RL network.
Adaptive Adjacency Matrix. Leveraging a data-driven strategy, we dynami-
cally uncover latent client associations, constructing a more comprehensive adja-
cency matrix that elucidates the collaborative relationships among clients, over-
coming the limitations of approaches based solely on prior knowledge like data
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distribution distances. Specifically, the relationships between nodes are mea-
sured by the similarity of the learnable node embedding vector EG ∈ Rm×de (m:
number of nodes, de: node embedding dimension), and then applying softmax
normalization to the matrix. The Laplacian matrix, derived from the adjacency
matrix A and degree matrix D, formulated as

Ã = I +D− 1
2AD− 1

2 = softmax(EG · ET
G) (5)

The details of FedGraphRL’s workflow are as described in Algorithm 1.
To simplify notation, the transition vector (St−1, At−1, Rt−1, St) is denoted as
(S,A,R, S′) when training the FedGraphRL agent. Details of the actor-critic
network are given in the supplementary materials.

3 Experiments and Results

3.1 Dataset and Experimental Setup

Dataset. We conducted case studies on two real-world multi-center medical
datasets: (1) HAM10k [26], encompassing skin lesion classification data from four
distinct sources, and (2) Fed-DRG, comprising data collected from six public
datasets (APTOS [10], DeepDR [18], FGADR [30], e-ophtha [5], IDRiD [22],
Messidor [1]) for diabetic retinopathy grading. More details can be found in
the supplementary materials. Each institution/source, acting as a single client,
contributes data that reflects realistic heterogeneous distributions. The data is
randomly split into training, validation, and test sets, with ratios of 0.7, 0.1, and
0.2 for each client, respectively. All images are resized to 128×128.
Implementation Details. In each client, we train Efficientnet-b0 [24] using
Adam [11] optimizer with a learning rate of 5e-4, momentum of 0.9 and 0.99,
and employing cross-entropy loss, for 200 and 50 rounds on the HAM10k and
Fed-DRG to ensure steady model convergence. The local epoch is 1 and the batch
size is 64. AGCN layer’s embedding dimension de is 5. The agent is trained with
a learning rate of 1e-3 and a batch size of 8, using a soft main-target update
factor of 5e-3 and a discount factor γ of 0.99. Warm-up rounds W is designated
as 16 and 8 for HAM10k and Fed-DRG, respectively.
Evaluation Metrics. According to [6], we use accuracy (Acc) as the perfor-
mance metric of clients. Following the definition of fairness from [15,27], we
utilize the standard deviation (Std.) of clients’ test Acc to assess performance
fairness and the average (Avg.) test Acc to evaluate the FL system’s performance.

3.2 Comparison with SOTA Methods

We compared our method against the baseline approach FedAvg [20] and sev-
eral current SOTA methods for FFL. FedFV [27] and FedMGDA+ [7] aim
to find a more optimal global gradient by reducing local gradient conflicts.
AFL [21] employs a min-max approach to protect the lowest-performing client.
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Table 1. Performance of our FedGraphRL and nine competing methods. For each task,
best and second best ranks are marked.

Task Skin Lesion Classification Diabetic Retinopathy Grading
Client 1 2 3 4 Avg. Std. 1 2 3 4 5 6 Avg. Std.
FedAvg 96.33 74.26 57.08 67.05 73.68 14.43 97.17 79.75 85.87 70.45 68.93 70.49 78.78 10.2
AFL 95.06 69.64 66.15 85.22 79.02 11.72 96.76 73.25 91.85 82.95 71.84 70.77 80.86 10.15

q-FedAvg 92.92 70.83 66.81 84.09 78.66 10.42 95.14 73.75 92.12 72.73 76.7 72.21 80.44 9.47
TERM 96.21 70.39 54.20 76.14 74.23 15.02 97.17 80.00 86.68 73.86 70.87 69.91 79.75 9.68
FedFV 93.93 67.86 57.96 80.68 75.11 13.53 96.90 70.50 87.50 78.41 77.67 69.34 80.05 9.61

FedMGDA+ 94.44 77.98 62.39 85.23 80.01 11.73 96.49 70.25 85.87 80.68 76.70 69.63 79.94 9.31
PropFair 95.95 72.17 58.63 76.14 75.72 13.36 97.30 77.75 86.96 67.05 77.67 71.06 79.63 10.04
Prop-FFL 95.32 76.49 66.37 81.82 80.00 10.44 96.22 76.00 92.12 73.91 75.73 71.92 80.98 9.49

FedCE 96.21 80.21 67.70 72.73 79.21 10.78 96.09 78.25 91.57 76.14 74.76 70.20 81.17 9.36
FedGraphRL 93.05 81.55 65.27 86.36 81.56 10.25 95.68 82.75 91.85 73.86 77.67 70.77 82.10 9.09
FedGraphRL* 94.31 81.55 68.14 86.36 82.59 9.51 95.41 80.50 92.39 82.95 77.67 73.07 83.67 7.88

Table 2. Performance of FedGraphRL, its four variants, and one baseline method.

Method HAM10k Fed-DRG
Avg. Std. Avg. Std.

Baseline FedAvg 73.68 14.43 78.78 10.20

Analysis of AGCN
RL 78.29 9.39 81.51 9.90
RL + GCN w/ Pre-Defined Relation Graph 80.92 10.58 81.75 8.48
RL +AGCN (FedGraphRL*) 82.59 9.51 83.67 7.88

Analysis of RL
AGCN 78.08 10.63 80.78 9.44
AGCN + RL (FedGraphRL) 81.56 10.25 82.10 9.09
AGCN + RL (FedGraphRL*) 82.59 9.51 83.67 7.88

q-Fedavg [15], TERM [13], Prop-Fair [28] and Prop-FFL [6] devise weighted ag-
gregation schemes for model/gradient aggregation that flexibly balance accuracy
and fairness. FedCE [8] uses the local client’s Shapley Value estimates as weights
for model aggregation. We treat one execution of Algorithm 1 as an episode. In
Table 1, FedGraphRL is compared against other methods in a single episode to
ensure comparison fairness under the same number of communication rounds.
We also explore FedGraphRL* over multiple episodes, catering to scenarios of
(1) high accuracy and fairness demands with sufficient communication resources,
and (2) transferring the server-side agent to different FL settings. FedGraphRL*
and FedGraphRL achieved top positions in average accuracy and the lowest
standard deviations, demonstrating superior performance and fairness.

3.3 Further Analysis

Ablation Study on Different Parts of Our Method. The detailed ablation
studies shown in Table 2 further validate the effectiveness of each component
in FedGraphRL. In the analysis of the AGCN, “GCN w/ Pre-Defined Rela-
tion Graph” uses pairwise distances from [2] as its adjacency matrix. Lack of
or singular client collaboration inputs, like distribution distance, impairs feder-
ated system optimization. Conversely, AGCN’s adaptive adjacency matrix cap-
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Table 3. The effect of q on the average and standard deviation of clients’ test accuracy.

Task Skin Lesion Classification Diabetic Retinopathy Grading
q 1 2 3 4 Avg. Std. 1 2 3 4 5 6 Avg. Std.
1 94.44 82.14 70.80 80.68 82.02 8.40 93.79 78.50 89.95 79.55 76.70 75.07 82.26 7.03

0.5 93.55 81.99 68.36 85.23 82.28 9.08 94.73 76.00 91.57 80.68 78.64 73.92 82.59 7.81
0.2 94.94 83.18 68.36 82.95 82.36 9.42 94.06 74.50 92.66 81.82 79.61 74.79 82.91 7.83
0.1 94.31 81.55 68.14 86.36 82.59 9.51 95.41 80.50 92.39 82.95 77.67 73.07 83.67 7.88
0 94.94 85.27 65.27 82.95 82.11 10.71 95.41 80.75 91.03 78.41 75.73 73.07 82.40 8.10

tures client relations more flexibly. For the RL component, since using only
the AGCN component does not generate aggregation weights, we mimic [3] by
using the weighted average of neighbor nodes as the aggregation weight. RL
utilizes AGCN’s collaboration graph for improved automated decision-making
and fairness. As training episodes increase, replay buffer diversity improves, and
FedGraphRL* achieves more precise decisions than FedGraphRL.
The Effect of the Fairness Impact Factor q. The aggregate loss in Fed-
GraphRL’s reward balances between performance and fairness using q. With
q = 0, the aggregate loss aligns with FedAvg [20]. Results show that higher q
values decrease the standard deviation, indicating greater fairness in the fed-
erated system, but at the cost of reduced average performance. q = 0.1 offers
acceptable performance and fairness across all datasets.

Pre-Defined Learned Pre-Defined Learned

(a) Similarity of Collaboration Graph on HAM10k: 77.67% (b) Similarity of Collaboration Graph on Fed-DRG: 88.96%

Fig. 2. Visualization of pre-defined graph and learned graph on two federated datasets.

Visualization of Collaboration Graph G. Fig. 2 visualizes the normalized
pre-defined graph used in the ablation study (left half) and the collaboration
graph learned by AGCN (right half). On two federated datasets, the learned
graph is more “comprehensive” than the pre-defined one, which solely depends
on pairwise distribution distances. AGCN advances beyond learning from the
pre-defined graph and reveals intricate hidden client relationships.

4 Conclusion

In this paper, we introduce a FedGraphRL-based model aggregation strategy for
FFL. Equipped with a multi-layer AGCN, the FedGraphRL agent learns the col-
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laboration graph among clients to reveal the collaborative relationships among
clients in optimization, and captures the graph’s features precisely. Through a
learning-based mechanism automatically allocates aggregation weights to each
client model, significantly improving fairness. Experiments on two multi-center
medical image datasets demonstrate that FedGraphRL outperforms baseline
models and the SOTA FFL method.
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