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Abstract. The advent of 3D Gaussian Splatting (3D-GS) techniques
and their dynamic scene modeling variants, 4D-GS, offers promising
prospects for real-time rendering of dynamic surgical scenarios. How-
ever, the prerequisite for modeling dynamic scenes by a large number
of Gaussian units, the high-dimensional Gaussian attributes and the
high-resolution deformation fields, all lead to serve storage issues that
hinder real-time rendering in resource-limited surgical equipment. To
surmount these limitations, we introduce a Lightweight 4D Gaussian
Splatting framework (LGS) that can liberate the efficiency bottlenecks
of both rendering and storage for dynamic endoscopic reconstruction.
Specifically, to minimize the redundancy of Gaussian quantities, we pro-
pose Deformation-Aware Pruning by gauging the impact of each Gaus-
sian on deformation. Concurrently, to reduce the redundancy of Gaus-
sian attributes, we simplify the representation of textures and lighting in
non-crucial areas by pruning the dimensions of Gaussian attributes. We
further resolve the feature field redundancy caused by the high resolu-
tion of 4D neural spatiotemporal encoder for modeling dynamic scenes
via a 4D feature field condensation. Experiments on public benchmarks
demonstrate the efficacy of LGS in terms of a compression rate exceeding
9× while maintaining the pleasing visual quality and real-time render-
ing efficiency. LGS confirms a substantial step towards its application in
robotic surgical services. Project page: https://lgs-endo.github.io/.

Keywords: 3D Reconstruction · Gaussian Splatting · Robotic Surgery.

1 Introduction

Reconstructing dynamic 3D scenes from endoscopic videos holds paramount sig-
nificance in minimally invasive surgeries [26,31], as it enhances comprehension of
the spatial environment surrounding the surgical site, thereby enabling surgeons
to conduct more precise and efficient operations [19,11]. Concomitantly, this
technology fosters a myriad of subsequent applications, encompassing Virtual
Reality (VR) surgeries, medical pedagogy, and the automation of robotic surg-
eries [17,25]. Subsequent advancements, particularly real-time rendering, have
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emerged as a cutting-edge methodology conducive to deployment on robotic ap-
paratus, thereby facilitating the progression of robotic surgical automation [16],
medical imaging system [12] and aided diagnosis procedure [6].

Previous 3D reconstruction methods encompass various approaches, includ-
ing those employing depth estimation [18], SLAM-based methods [24,33], and
techniques leveraging a sparse warp field [13,5]. With the rising of neural ren-
dering, Neural Radiance Fields (NeRF) [20] is introduced to reconstruct the sur-
gical scenes [26,28,31], unlocking the limited reconstruction quality of dynamic
scenes compared with conventional methods. EndoNeRF [26] and its following
works [28,31] utilize dynamic neural radiance fields to model deformed surgical
scenes and achieve satisfied rendering quality. Recently, 3D Gaussian Splatting
(3D-GS) [8], which utilizes an explicit 3D Gaussian representation with spe-
cific attributes to model scenes and a differentiated splatting-based rendering
technique, has exhibited pleasing reconstruction efficiency from a series of static
captures. Further advances of 4D-GS [27] break this static limitation by ad-
ditionally introduce an elaborated high-resolution spatiotemporal feature field
to model the time-varying deformation [27] and the relevant progress has been
extended to clinical scenarios like reconstructing deformable tissues in dynamic
endoscopic scenes in real-time efficiency [15,29,32,34].

Nevertheless, owing to using explicit point-based representations and intri-
cate high-dimensional spatial-temporal fields, the storage burden of 3D repre-
sentation is significantly enlarged, thereby limiting the practical deployment on
resource-limited surgical devices and robots [1,23,10]. In particular, the memory
burden by 4D-GS primarily lies in the following folds. (a) Redundant Number of
Gaussians: Gaussian densification [8] increases the number of Gaussian for the
accurate reconstruction of granular details, which results in a significant mem-
ory cost [4]. While compared with nature scenes, surgical scenarios require less
Gaussians to model the relatively simple environment. (b) Redundant Dimen-
sion of Gaussian Attributes: Natural scenes require high-dimensional attributes
to represent the rich textures and varying illumination. While the intricate envi-
ronment of surgical scenes such as repetitive textures and view-dependent light-
ing [3,22] can be represented with fewer parameters, which causes the redun-
dant dimension of Gaussian Attributes. (c) High Resolution of Spatial-temporal
Fields: A lower-resolution feature field [21] is sufficient to represent deformation,
while the high resolution used in spatial-temporal feature fields is redundant to
model the dynamics and encode the endoscopic scenario information.

To address the challenges of practical deployment of reconstruction models
posed by the aforementioned prohibitively high memory burden. we propose a
holistic Lightweight 4D Gaussian Splatting (LGS) framework that allows for
achieving satisfactory endoscopic reconstruction with both efficient rendering
and storing [7]. In particular, to alleviate the Quantity burden of Gaussian
representation, we present a Deformation-Aware Pruning (DAP) which iden-
tifies the informative Gaussians by a carefully designed deformation score and
reduces the redundant Gaussians based on a deformation perception. To address
the High-dimension burden of Gaussian attributes, we propose a Gaussian-
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Fig. 1. LGS Overview consists of (a) Deformation-Aware Pruning, (b) Gaussian-
Attribute Pruning, (c) Feature Field Condensation, and distillation for optimization.

Attribute Pruning (GAP), which elucidates the uninformative visual patterns
modeled by high-frequency components (non-critical textures) in Spherical Har-
monic attributes, thereby steering the representation capabilities towards low-
frequency attribute characterization. To mitigate the High-resolution burden
of spatial-temporal deformable fields, we present Feature Field Condensation
(FFC) which compactly represents the high-resolution spatial-temporal feature
field and performs an adaptive quantized projection of spatial-temporal coordi-
nates. Experimental results show that LGS can achieve higher storage efficiency
with an over 9× compression rate, whilst maintaining pleasing reconstruction
quality and rendering speed, confirming the efficacy of our framework for prac-
tical deployment in clinical robotic surgical equipment.

2 Method

The overview of LGS is shown in Fig. 1. In this section, we first introduce the
representation of 3D-GS [8] and its dynamic variant [27] in Sec. 2.1. Then we
introduce the DAP and GAP respectively in Sec. 2.2 and Sec . 2.3. In Sec. 2.4
we conduct FFC and finally, we describe the optimization of LGS in Sec. 2.5.

2.1 Preliminaries

3D-GS As introduced in [8], a set of dense Gaussians is utilized to represent
the 3D data and achieve real-time rendering of dynamic scenes. Each Gaussian
is defined by its center µ ∈ R3 and the covariance matrix Σ ∈ R3×3, which can
be decomposed into a scaling factor s ∈ R3 and a rotation quaternion q ∈ R4
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for differentiable optimization. Colors and view-dependent appearance can be
represented by opacity σ ∈ R and SH coefficients α ∈ RC (C devotes the number
of SH). After differential splatting [30] and adaptive density control [8], these
Gaussians are optimized to achieve real-time rendering for dynamic scenes,

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ) (1)

Dynamic Scene Rendering As the extension of 3D-GS, [27] utilizes a de-
formation module which involves a spatial-temporal feature field E and a tiny
MLP F to calculate deformation. Given a 4D input consisting of the Gaus-
sian center µ = (x, y, z) and query time t, the feature field E retrieves the
latent feature f of the input: f = E(µ, t). Subsequently, the tiny MLP F cal-
culates the deformation in position, rotation, and scaling: ∆µ, ∆q, ∆s = F (f).
Then the i-th Gaussian can be represented as Θi = {µi

′, qi
′, si

′, σi,αi}, where
µi

′, qi
′, si

′ = µi +∆µi, qi +∆qi, si +∆si.

2.2 Deformation-Aware Pruning

To distinguish Gaussians that are informative for modeling deformable dynam-
ics, we propose a deformation score to identify the impact of each Gaussian on
deformation enabling the follow-up importance-based pruning can be conducted.
Deformation Score Inspired by the color rendering in 3D-GS [8] and the global
importance score in [4], the deformation score of each Gaussian is associated with
its contribution to all pixels and its deformation in volume across all timestamps.
We use the criterion 1(G(Xi),pk, t) to reflect whether the i-th Gaussian is con-
tributed to the pixel k at timestamp t. The volume deformation of the i-th
Gaussian ∆V (si) can be calculated with scaling factor si and deformation ∆si.
Consequently, the deformation score is obtained by,

di =
T∑
t

HW∑
k

1(G(Xi),pk, t) ·∆V (si), ∆V (si) =
T∑
t

∥V (si)− V (si +∆si)∥1

(2)
where T , H, and W denotes the timestamps, height and weight of the image,
V (s) = 4πs1s2s3/3 devotes the volume of Gaussian with s.
Deformation-Aware Pruning Based on the deformation score and a threshold
h, Gaussians are classified into two categories: stable SG = {i|di ≤ h} and
deformed DG = {i|di > h}. Then we conduct DAP respectively on DG and SG:
as shown in Eq.3, important score is computed for SG based on opacity and
normalized volume, and for DG based on original volume and its deformation,

ISi =



T∑
t

HW∑
k

1(G(Xi),pk, t) · σi · Vnorm(si), i ∈ SG

T∑
t

HW∑
k

1(G(Xi),pk, t) ·∆V (s) · Vnorm(si), i ∈ DG

(3)



Light-weight 4D Gaussian Splatting for Surgical Scene Reconstruction 5

where Vnorm(s) = (V (s)/Vmax90)
β reflects the normalized volume with a norm

factor β and Vmax90 reflects the 90% largest volume of all sorted Gaussians.
Then we prune the Gaussians with lower important scores in each of the two
classes accordingly, which can remove unimportant Gaussians while retaining
those crucial for deformation.

2.3 Gaussian-Attribute Pruning

Gaussian Attributes are redundant to represent the intricate environment of
surgical scenes caused by repetitive textures and view-dependent lighting. SH
coefficients contain 48 floating-point values and represent over 80% of all at-
tributes for each Gaussian [4], which is far more than other attributes that
cannot be pruned, such as position, rotation, scaling factor, and opacity. Based
on this, GAP reduces the higher degree SH coefficients used to model the view-
dependent color and scene reflection. To enhance model memory efficiency and
suitability for surgical scenes, we use a threshold to represent the pruned de-
gree of SH coefficients [4]. As described in Eq. 4, GAP adjusts the SH degree
from high to low, which effectively reduces the redundancy of each Gaussian’s
attributes.

αic = αic ∗ 1(c ≤ (hsh + 1)2 +NRGB), c ∈ C (4)

where hsh is the threshold for low SH degree, and NRGB represents the number
of SH coefficients to depict RGB colors, which is normally set to 3. To take full
advantage of the information contained in the pruned attributes for modeling
the surface of the object, we utilize distillation to transfer knowledge from SH
coefficients at higher degree, which will be detailed in Sec. 2.5.

2.4 Feature Field Condensation

The deformation module including a spatial-temporal feature field E and a tiny
MLP F is used to learn the representation of 4D data and the deformation at
different timestamps. Despite the existence of methods such as Gaussian pruning
and vector quantization [4,9] that aim to reduce the size of GS-based models,
they are primarily designed for static scenes and are unable to address memory
issues. To represent the position of the Gaussian and the query time, a spatial-
temporal feature field with higher resolution is used for 4D encoding. Though
this approach allows the model to capture more details of deformation, it also
requires a significant amount of storage space, accounting for over 80% of the
required storage, which hinders model deployment on robotic surgical devices.

Motivated by these observations, we propose the FFC to make our model
more memory-efficient and easier to deploy on robotic surgical devices. Con-
sidering that nearby 3D Gaussians always share similar spatial and temporal
information which means adjacent values on the same voxel plane should also
be similar. To reduce the size of the voxel plane and preserve every 4D feature
as much as possible, we conduct 3D adaptive pooling on each 4D voxel plane,
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which is described in Eq. 5. The tiny MLP F remains to preserve the ability of
deformation calculation,

E′
Φ(i, j) =

1

rΦ1
rΦ2

(i+1)·rΦ1∑
i′=i·rΦ1

(j+1)·rΦ2∑
j′=j·rΦ2

EΦ(i
′, j′) (5)

where Φ = (Φ1, Φ2) ∈ {(x, y), (x, z), (y, z), (x, t), (y, t), (z, t)} devotes the sub-
planes of the spatial-temporal feature field, and rΦi

represents the compression
rate of the feature field on the Φi axis.

2.5 Optimization

To achieve the balance between efficient memory and high-quality rendering
performance, we use knowledge distillation [7,10] during optimization. We treat
the uncompressed and well-trained model as teacher model, and the model pro-
cessed by DAP, GAP, and FFC as the student model. We minimize the loss
L = Ld+Lr to better transfer knowledge from the trained teacher model to the
memory-efficient student model and achieve a memory-efficient and high-quality
model [7,14]. Ld is the distillation loss between the rendered images of teacher
model and student model, and Lr is the rendering loss between the rendered
image of student model and the ground truth,

Ld =
1

T

T∑
t

∥Îtch(t)− Îstu(t)∥2, Lr =
1

T

T∑
t

∥Igt(t)− Îstu(t)∥2 (6)

where T is the number of training timestamps, Îtch(t), Îstu(t) and Igt(t) are
the rendered image of teacher model and student model, and the ground truth
image at timestamp t.

3 Experiments

3.1 Experimental Settings

Datasets We conduct experiments on two widely used datasets: ENDONERF
[26] and SCARED [2]. ENDONERF [26] consists of two public cases of in-house
DaVinci robotic prostatectomy data, each depicting a single-view scene with
non-rigid deformation and tool occlusion. Following [31], we use 5 keyframes of
SCARED [2] captured by a da Vinci Xi surgical robot. To align with prior work
[15,31], we divided each keyframe into 7:1 training and testing sets.
Compared Methods We compare with recent reconstruction methods of dy-
namic surgical scenes, including NeRF-based methods: EndoNeRF [26], En-
doSurf [31], LerPlane [28], and GS-based methods: EndoGaussian [15], En-
doGS [34]. We use PSNR, SSIM, and LPIPS as metrics for rendering quality.
Following [4], we use the storage size of the model and frames-per-second (FPS)
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Table 1. Experimental results on ENDONERF [26] and SCARED [2]

Dataset Method Size(↓) FPS(↑) SSIM(↑) PSNR(↑) LPIPS(↓)

ENDONERF [26]

EndoNeRF [26] 13.00MB 0.035 0.933 36.06 0.089
EndoSurf [31] 20.00MB 0.040 0.954 36.53 0.074

LerPlane-9k [28] 274.0MB 0.911 0.926 34.99 0.080
LerPlane-32k [28] 274.0MB 0.872 0.950 37.38 0.047

EndoGS [34] 322.7MB 91.75 0.963 37.29 0.045
EndoGaussian [15] 334.5MB 166.5 0.960 37.78 0.053

LGS (Ours) 25.00MB 188.3 0.955 37.48 0.068

SCARED [2]

EndoNeRF [26] 6.900MB 0.016 0.768 24.35 0.397
EndoSurf [31] 14.00MB 0.009 0.802 25.02 0.356

EndoGaussian [15] 184.0MB 170.56 0.825 26.89 0.272
LGS (Ours) 20.40MB 194.66 0.826 27.05 0.297

Table 2. Ablation Study on ENDONERF [26] for each component of LGS

Model Overall Size↓ GS Size↓ Deform Size↓ FPS↑ SSIM↑ PSNR↑ LPIPS↓

w/o DAP 56.70MB 33MB 23.70MB 74.44 0.963 38.36 0.051
w/o GAP 26.30MB 5.0MB 21.30MB 187.9 0.950 37.08 0.096
w/o FFC 329.6MB 3.3MB 326.3MB 177.9 0.945 35.82 0.082

Full model (Ours) 24.50MB 3.3MB 21.20MB 188.5 0.957 38.08 0.079

during inference as metrics for memory efficiency and rendering speed respec-
tively.
Implementation Details We use our checkpoints with the training details
described in EndoGaussian [15], where the initial number of Gaussians is 3000.
For ablation experiments, 30000 Gaussians are used for initialization For DAP,
we set the h to 0.5 and β to 0.1. For GAP, we set hsh to 2. For FFC, we set the
resolution of the feature field to [16, 16, 16, 25]. We implement our framework
with Pytorch and use the differential rasterization [4] as the render engine. The
training of LGS needs about 2GB GPU memory and 3 minutes.

3.2 Experimental Results

The experimental results on ENDONERF [26] and SCARED [2] are presented
in Table 1. It can be observed that the model size of LGS achieved a compres-
sion rate of 15× and 9× compared to EndoGaussian [15] on ENDONERF and
SCARED, respectively. Moreover, LGS exhibits a model size on the same or-
der of magnitude as EndoNeRF [26] and EndoSurf [31], inferring that LGS is
as memory-efficient as NeRF-based methods. The rendering quality difference
between LGS and GS-based methods can be ignored with 0.3 lower in PSNR
and 0.05 lower in SSIM on ENDONERF, while LGS outperforms EndoGaus-
sian on SCARED in SSIM and PSNR. Moreover, the visual results in Fig. 2
show that LGS can render the details in surgical scenes as well as the GS-based
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Fig. 2. Rendered images of previous methods and ours: PSNR reflects the quality of
the shown image and Size reflects the used memory to store model.

method. LGS has a higher rendering speed than EndoGaussian and EndoGS,
21.8 and 87.9 higher on FPS respectively. However, there is a clear gap between
GS-based methods and NeRF-based methods in terms of rendering speed and
quality. Therefore, LGS can achieve high-quality and real-time rendering for dy-
namic surgical scenes with memory efficiency similar to NeRF-based methods.

3.3 Ablation Studies

To prove the effectiveness of each component of LGS, we conduct ablation exper-
iments on the ENDONERF [26] dataset. and experimental results are presented
in Tab. 2. We can observe that DAP prunes the least unimportant Gaussians,
GAP reduces the number of parameters of each Gaussian by 40%, and FFC is also
significant for memory efficiency, as it reduces the resolution of spatial-temporal
feature field. The use of GAP and FFC can also improve the performance of
the model, which respectively solve the repetitive textures mentioned in Sec. 2.3
and utilize the spatial-temporal similarity of nearby Gaussians mentioned in
Sec. 2.4. Moreover, Tab. 2 suggests that the three proposed methods all con-
tribute positively to the enhancement of FPS. Overall, the three parts of LGS
are all important to achieve high-quality and real-time rendering of dynamic
surgical scenes with memory efficiency.



Light-weight 4D Gaussian Splatting for Surgical Scene Reconstruction 9

4 Conclusion

This paper presents Light-weight 4D Gaussian Splatting (LGS), a breakthrough
method for endoscopic reconstruction that addresses the challenges of render-
ing efficiency and memory efficiency. Specifically, we employ Deformation-Aware
Pruning to minimize the redundancy of unnecessary Gaussian quantities and
conduct Gaussian-Attribute Pruning to prune the dimensions of Gaussian at-
tributes which simplifies the representation of textures and lighting in non-crucial
areas. Additionally, we use Feature Field Condensation to tackle high-resolution
redundancy in the spatial-temporal feature field for dynamic scenes. Our exper-
iments on public datasets demonstrate that LGS achieves a compression rate
exceeding 9 × while maintaining high-quality and real-time rendering. With the
efficient memory usage and real-time rendering capabilities of LGS, we take a
significant step towards the practical deployment of 4D Gaussian Splatting in
robotic surgical services and point-of-care scenarios.
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