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Abstract. Deep learning has achieved impressive results in nuclei seg-
mentation, but the massive requirement for pixel-wise labels remains a
significant challenge. To alleviate the annotation burden, existing meth-
ods generate pseudo masks for model training using point labels. How-
ever, the generated masks are inevitably different from the ground truth,
and these dissimilarities are not handled reasonably during the net-
work training, resulting in the subpar performance of the segmentation
model. To tackle this issue, we propose a framework named DoNuSeg,
enabling Dynamic pseudo label Optimization in point-supervised Nuclei
Segmentation. Specifically, DoNuSeg takes advantage of class activation
maps (CAMs) to adaptively capture regions with semantics similar to an-
notated points. To leverage semantic diversity in the hierarchical feature
levels, we design a dynamic selection module to choose the optimal one
among CAMs from different encoder blocks as pseudo masks. Meanwhile,
a CAM-guided contrastive module is proposed to enhance the accuracy
of pseudo masks further. In addition to exploiting the semantic infor-
mation provided by CAMs, we consider location priors inherent to point
labels, developing a task-decoupled structure for effectively differentiat-
ing nuclei. Extensive experiments demonstrate that DoNuSeg outper-
forms state-of-the-art point-supervised methods. The code is available
at https://github.com/shinning0821/MICCAI24-DoNuSeg.

Keywords: Nuclei Instance Segmentation · Point-supervised Segmen-
tation · Pseudo Label Optimization · Class Activation Map.

1 Introduction

Nuclei segmentation in whole-slide images (WSIs) is crucial for uncovering tumor
microenvironment and thus informing relevant decisions in disease treatment
⋆ Ziyue Wang, Ye Zhang, and Yifeng Wang contributed equally.
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Fig. 1: (a) image input; (b) ground truth; (c) Voronoi label; (d) cluster label; (e) LSM
label; (f) our initial label M ; (g) our optimized label P . In (b)-(g), red, dark gray and
light gray pixels denote nuclei, background and ignored areas, respectively.

[13,16,27,7]. Recently, deep learning techniques [19,15,21,3,8,2] have promoted
nuclei segmentation. However, the success of the segmentation algorithms is
contingent on the availability of high-quality imaging data with corresponding
pixel-wise labels provided by experts. The annotating process is time-consuming
and labor-intensive, limiting the development of models. Meanwhile, point labels
that annotate nuclei with single points effectively reduce the annotation cost,
making it essential to develop point-supervised segmentation methods.

Existing point-supervised methods [12,28] generally adopt a two-stage frame-
work, first utilizing the biological morphology of nuclei to generate pixel-wise
pseudo masks, then training the segmentation model. For precise nuclei segmen-
tation, current research investigates various approaches to improve the quality
of the pseudo masks. As shown in Figure 1(c)(d), [18,22] integrates the Voronoi
diagram for mask generation, which considers the distance between points to
distinguish overlapping instances and then generates cluster labels in separate
regions. [26] develops a level-set method (LSM) to consider the nuclei’s topology
further as shown in Figure 1(e). However, these algorithms inevitably bring noisy
labels due to the enormous variation in nuclei shape, color, and distribution.
Meanwhile, these methods lack effective solutions for handling inaccurate labels.
This oversight may impair the model training, leading to insufficient nucleus
feature representation. To this end, devising reliable pseudo label enhancement
in the training phase is critical for point-supervised nuclei segmentation.

Out of the advantages of targeting class-related areas, class activation maps
(CAMs) are widely adopted for weakly supervised segmentation methods under
natural scenes [20,29]. During training, CAMs are gradually optimized and can
increasingly localize foreground regions. Therefore, we argue that CAMs have
the potential to serve as pseudo-labels. However, the direct application of CAMs
for labels encounters great challenges. Firstly, nuclei are densely distributed in
pathological images, while CAMs tend to capture the most salient regions, re-
sulting in frequently missed detection. Secondly, nuclei present low contrast with
the surrounding tissue, posing difficulty in determining instance boundaries using
low-resolution CAMs. Therefore, it is imperative to enhance the quality of CAM
generation and address the limitations of CAMs in distinguishing instances.

Motivated by the above discussions, this paper presents a Dynamic pseudo la-
bel Optimization method in point-supervised Nuclei Segmentation (DoNuSeg).
DoNuSeg takes advantage of the location priors provided by point labels and the
semantic-level representation of CAMs, decoupling nuclei instance segmentation
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into object detection and semantic segmentation. To alleviate the miss-detection
problem, we develop a novel Dynamic CAM Selection (DCS) module that incor-
porates the hierarchical features of the encoder for CAM generation, enriching
the nucleus-related features and obtaining more activated foreground areas. To
suppress the CAMs’ uncertainty, DoNuSeg adopts a CAM-guided contrastive
learning (CCL) module highlighting the representation differences between nu-
clei and the surrounding tissues, thereby accurately distinguishing nuclei bound-
aries. Overall, our contributions can be summarized as following aspects:

• We propose a novel weakly supervised nuclei instance segmentation frame-
work termed DoNuSeg, which effectively leverages CAMs to achieve dynamic
optimization of the pseudo label.

• We develop a pseudo label optimizing method that measures the accuracy
of CAMs generated by different feature levels and adaptively selects the
optimal CAM for label generation.

• We integrate a contrastive learning approach that utilizes the location in-
formation provided by points to widen the gap between nuclei and tissues,
refining the feature representation and improving CAMs’ location accuracy.

• Extensive experiments demonstrate the superiority of our method, outper-
forming state-of-the-art methods on three public datasets.

2 Methods
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Fig. 2: Overview of our DoNuSeg method, which utilizes a Dynamic CAM Selection
(DCS) module and a CAM-guided Contrastive Learning (CCL) module to dynamically
select and optimize pseudo labels.

Our DoNuSeg develops a dynamic pseudo label optimization method to solve
the challenges in point-supervised nuclei segmentation by the proposed DCS
and CCL module as shown in Figure 2. To further utilize the location prior, we
also take a task-decoupled structure as shown in Figure 3, which combines the
detection task and semantic segmentation task to achieve instance segmentation.
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Fig. 3: Backbone structure of DoNuSeg. The detection and segmentation head takes
hierarchical feature levels in the decoder as their input.

2.1 Backbone

Point annotations are challenging for pixel-wise segmentation but can be utilized
to train fully supervised agent tasks to generate CAMs. CAMs offer valuable in-
sights into the model’s focus on crucial foreground regions, providing valuable
guidance for training segmentation networks. However, CAMs only capture se-
mantic information and require additional assistance differentiating individual
instances. To address this limitation, we propose a decoupled instance segmen-
tation method, as illustrated in Figure 3. Our approach leverages the positional
priors obtained from point annotations to accurately predict bounding boxes,
facilitating the distinction of instances within the semantic masks.

We take FPN [11] as the backbone with a ResNet50 [6] encoder. The decoder
has a shared detection and segmentation head for each feature level. For the
detection head, our design is based on the efficient detector FCOS [23] while
the segmentation head is composed of four convolutional layers. The predicted
bounding boxes are used to distinguish instances from the semantic masks.

We first calculate the pseudo bounding box for point labels following dense
object detection in natural scenarios [24], which is used to compute the loss of
detection heads Ldet following FCOS [23] (details seen in the supplementary ma-
terials). As shown in Figure 1(f), we obtain the initial label M for segmentation
by assuming that pixels within r units around the point labels are foreground
and pixels more than d units away from the point labels are background. Other
pixels are ignored while training to avoid introducing noise. The segmentation
loss is computed as follows:

Lseg = − 1

|ΩM |
∑

i∈ΩM

[(1−Mi)log(1− Yi) +Milog(Yi)], (1)

where Yi and Mi denote segmentation prediction Y and initial label M at the
ith pixel, and ΩM is the set of non-ignored pixels in M . For the generation of
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CAMs, a localization head following the encoder is employed to conduct fully
supervised point localization, which consists of three fully connected layers and
is trained by an MSE loss Lloc. The total loss function is computed as follows:

L = Ldet + Lseg + Lloc + ω1Ldcs + ω2Lccl, (2)

where Ldcs and Lccl are the loss of the proposed DCS and CCL module and will
be introduced in the following subsections. ω1 and ω2 are hyperparameters.

2.2 Dynamic CAM Selection Module

As shown in Figure 2, CAMs can reflect the attention area of the encoder and
exhibit different semantic information depending on specific layers. Previous
studies [20,29] primarily utilize CAMs generated by the encoder’s last layer,
which has limited coverage of the foreground regions and coarse-grained bound-
aries resulting from upsampling from the small-size deep feature map. However,
the encoder’s intermediate layers’ CAMs, which capture more nuclei and can
provide fine-grained information, are often ignored. Therefore, the DCS module
is utilized to choose the proper CAM dynamically. As shown in Figure 2, we first
filter the generated CAM by a threshold θ to get a binary map C:

Ci =

1, CAMi > θ,
0, CAMi ≤ 1− θ,
ignored, 1− θ < CAMi ≤ θ,

(3)

where CAMi and Ci denote CAM and C at the ith pixel. The similarity rate α
of C is defined as follows:

α =
1

|ΩM |
∑

i∈ΩM

MiCi + M̄iC̄i, (4)

where Mi denote the initial label M at the ith pixel, and ΩM is the set of non-
ignored pixels in M . We choose C with the maximum α as the optimized pseudo
label P to dynamically supervise segmentation network training by:

Ldcs = − αP

|ΩP |
∑
i∈ΩP

[(1− Pi)log(1− Yi) + Pilog(Yi)], (5)

where Pi and Yi denotes P and the segentation prediction Y at the ith pixel,
αP is the similarity rate of P , and ΩP is the set of non-ignored pixels in P .

2.3 CAM-guided Contrastive Learning Module

To better segment nuclei boundaries, we propose a CAM-guided Contrastive
Learning module to enhance intra-class coherence and inter-class discrimination
of nuclei and background features. As described in Section 2.1, the initial pseudo
label M hardly contains noise, thus by aligning the CAM’s attention regions
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with the initial label M , CAM concentrates more on nuclei and less on the
background, which enhances the accuracy of CAM. Details are described below:

We use a projector g which consists of four 3 × 3 convolutional layers and
a three-layer MLP to preserve critical contextual information following [1]. The
features outputted by the encoder are enhanced by g and then upsampled to the
size of the original image as the enhanced feature map Z. Let Zi, Mi, Pi denote
Z, the initial Label M and the optimized label P at the ith pixel respectively,
nuclei and background feature sets are defined as F+ = {Zi ∈ Z|Mi = 1} and
F− = {Zi ∈ Z|Mi = 0}. The anchor features a+ and a− are computed by the
average of F+ and F−, which can be regarded as the ground truth for nuclei
and background features.Positive and negative feature sets can be sampled by P :
S+ = {Zi ∈ Z|Pi = 1} and S− = {Zi ∈ Z|Pi = 0}. The pixel-wise contrastive
learning loss is computed by:

Lccl = αP (Lcon(a
+, S+, S−) + Lcon(a

−, S−, S+)), (6)

where αP is the similarity rate of P . Lcon is defined as follows:

Lcon(q, U, V ) = − 1

|U |
∑
u∈U

[ϕ(q, u)/τ − log(eϕ(q,u)/τ +
∑
v∈V

eϕ(q,v)/τ )], (7)

where τ is a hyperparameter and ϕ denotes the consine similarity, q is an anchor
feature and U, V are the similar and dissimilar feature sets. The proposed module
can make the features of the foreground and background pixels in P closer to
the corresponding anchor features, thus enhancing the feature representation.

3 Experiments and Results

Table 1: Performance comparison (%) with SOTA point-supervised methods.
The best performance is shown in bold, and the second is underlined.

Datasets Methods DICE AJI DQ SQ PQ
CryoNuSeg WeakSeg [18] 59.08±2.27 29.07±1.81 34.97±1.15 62.91±1.42 23.78±1.51

PseudoEdgeNet [25] 60.42±1.71 36.78±2.17 35.03±3.32 63.10±1.53 22.37±1.29
MaskGA-Net [5] 65.94±2.85 40.13±0.73 41.18±1.81 67.47±0.89 28.19±1.13
DDTNet [26] 68.32±1.97 34.05±0.93 41.83±0.81 66.86±1.40 27.91±2.17
SC-Net [12] 63.17±0.74 38.63±1.28 38.82±0.44 65.32±1.34 25.43±2.03
DoNuSeg (Ours) 67.22±1.30 44.08±0.77 46.41±1.67 65.74±1.31 30.58±1.53

CoNSeP WeakSeg [18] 63.32±1.16 33.41±1.34 34.97±2.10 64.91±1.60 23.17±0.58
PseudoEdgeNet [25] 33.07±2.24 22.07±1.10 14.38±1.82 52.54±0.67 15.26±1.11
MaskGA-Net [5] 28.69±1.61 20.70±1.55 19.97±0.36 52.37±2.03 18.81±1.29
DDTNet [26] 58.82±1.29 29.58±2.18 28.33±0.25 65.20±1.77 20.67±0.43
SC-Net [12] 49.95±1.55 31.70±0.43 27.77±0.17 57.12±0.76 21.58±2.05
DoNuSeg (Ours) 60.20±2.10 36.39±1.77 36.68±0.74 62.33±1.83 23.95±0.99

TNBC WeakSeg [18] 66.22±0.33 44.82±1.91 50.45±0.37 67.91±1.58 33.05±2.34
PseudoEdgeNet [25] 48.27±0.40 32.83±1.38 30.31±2.74 54.76±0.72 20.26±1.92
MaskGA-Net [5] 55.01±2.07 36.16±1.09 40.26±1.40 56.24±2.45 27.13±1.98
DDTNet [26] 67.88±1.59 47.83±2.01 58.56±0.57 66.79±2.26 40.08±0.76
SC-Net [12] 63.24±1.91 44.75±1.92 53.62±1.21 58.38±0.39 35.29±0.67
DoNuSeg (Ours) 63.99±1.18 50.06±0.94 58.77±0.69 68.75±1.34 40.64±0.54
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3.1 Datasets and Metrics

We evaluate the proposed method on three public datasets, namely CryoNuSeg
[14], ConSeP [4], and TNBC [17]. CryoNuSeg contains 30 images sampled from
10 organ tissues with the size of 512× 512. ConSeP includes 41 images sampled
from colon patients with the size of 1000 × 1000. TNBC consists of 50 images
from 11 breast cancer patients with a size of 512×512. Datasets are divided into
training, validation, and test sets in a ratio of 3:1:1. All images are then cropped
into 256× 256 sized patches with an overlapping of 128 pixels.

We adopt five widely used metrics for quantitative evaluation: DICE, Aggre-
gated Jaccard Index (AJI) [10], Detection Quality (DQ), Segmentation Quality
(SQ), and Panoptic Quality (PQ) [9]. The higher value is better for these metrics.
To avoid randomness, we adopt 5-fold cross-validation and report the average
values and the standard deviation in the testing set.

3.2 Implementation Details

Our experiments are implemented on PyTorch 1.10.0 using an Nvidia RTX 3090
GPU. We adopt an SGD optimizer for model training with a learning rate of
0.01, a momentum of 0.9, and a weight decay of 0.0005. Each model is trained
for up to 40 epochs with a mini-batch size of 8. We set hyperparameters r = 4,
d = 20, τ = 1, ω1= 0.5, ω2= 2, and θ = 0.8. Online data augmentation is
employed including random flipping, random rotation, and random cropping.

3.3 Comparisons with State-of-the-art Methods

We compare DoNuSeg with SOTA point-supervised segmentation methods: Weak-
Seg [18], PseudoEdgeNet [25], MaskGA-Net [5], DDTNet [26], and SC-Net [12].
Since MaskGA-Net and PseudoEdgeNet only conduct semantic segmentation,
we obtain the instance mask by applying post-processing following [4].

Ground TruthSC-Net OursPatches MaskGA-Net DDTNetWeakSeg PseudoEdgeNet
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Fig. 4: Visualization comparison of segmentation results on three datasets. Red and
black circles indicate the false negative (FN) and false positive (FP) errors. Green
circles denote how DoNuSeg corrects these errors.
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Table 2: Effects (%) of Ldcs and Lccl on CryoNuSeg and CoNSeP.

Ldcs Lccl
CryoNuSeg CoNSeP

DICE AJI DQ SQ PQ DICE AJI DQ SQ PQ
60.93 41.78 42.68 63.93 27.32 53.69 35.51 35.77 55.18 22.85

✓ 66.48 43.82 46.41 64.99 30.20 57.94 35.75 35.92 60.14 23.36
✓ 64.02 43.71 45.66 65.60 30.06 52.98 36.53 36.55 60.43 23.12

✓ ✓ 67.22 44.08 46.41 65.74 30.58 60.20 36.39 36.68 62.33 23.95

Quantitative Evaluation. Table 1 presents performance comparisons in terms
of five metrics. It can be seen that previous methods present poor performance
due to the absence of correction for noisy pseudo labels. In contrast, our method
outperforms state-of-the-art methods on AJI, DQ, and PQ across all the datasets.
Notably, DoNuSeg achieves significant improvements in terms of AJI, surpassing
the second-best by 3.9%, 2.9%, and 2.2% on the three datasets, respectively.

Qualitative Evaluation. Figure 4 displays the visual comparison results. As
challenging datasets, CryoNuSeg and CoNSeP have a low distinction between
nuclei and background tissue. Thus, the generated pseudo-labels based on mor-
phology measure often involve much noise and lead to numerous FN and FP
errors. Surprisingly, DoNuSeg can dynamically select and optimize pseudo la-
bels, thus performing well on these challenging datasets.

3.4 Ablation Study

We conduct ablation experiments on CryoNuSeg and CoNSeP to prove the effec-
tiveness of the proposed method. As shown in Table 2, the method significantly
improves when adding Ldcs and Lccl and achieves the best performance when
both are added. This shows that DCS and CCL improve the training performance
of the segmentation network by improving the quality of the pseudo-label.

Table 3: Effects (%) of the CAM selec-
tion strategy on CryoNuSeg.

block DICE AJI DQ SQ PQ
1 61.95 40.14 39.88 64.81 27.14
2 64.53 40.91 41.16 65.35 29.06
3 67.10 41.44 40.97 66.02 27.37
4 62.84 41.73 45.60 64.38 28.35

ours 67.22 44.08 46.41 65.74 30.58

Fig. 5: Effects (%) of different r and d
when generating M on CryoNuSeg.
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Table 3 shows the effect of the CAM selection strategy in the DCS module. It
can be seen that the proposed method can combine semantic information in hier-
archical features and achieve the best performance. Notably, compared to merely
using CAM generated by the fourth block as in previous methods, the perfor-
mance improves by 4.4%, 2.4%, and 2.1% on DICE, AJI, and PQ, respectively.
Furthermore, as shown in Figure 5, when changing the hyperparameters r and d
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in generating the initial label M , the model’s performance is almost unaffected,
which shows that our method is robust to the selection of parameters.

4 Conclusion

This paper proposes a point-supervised nuclei segmentation framework, DoNuSeg,
to reduce the cost of pixel-level annotations. DoNuSeg utilizes CAMs to achieve
a dynamic optimization mechanism of the noisy pseudo labels. A DCS module
and a CCL module are proposed to dynamically select and optimize CAMs and
gradually correct the pseudo label. To better distinguish nuclei, we develop a
task-decouple structure to leverage location priors in point labels. Experiments
show that our method achieves SOTA performance, and the ablation study shows
the effectiveness of the proposed method. In conclusion, DoNuSeg provides fresh
insights for point-supervised nuclei instance segmentation.
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