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Abstract. Reconstructing neurons from large-scale optical microscope
images is a challenging task due to the complexity of neuronal structures
and extremely weak signals in certain regions. Traditional segmentation
models, built on vanilla convolutions and voxel-wise losses, struggle to
model long-range relationships in sparse volumetric data. As a result,
weak signals in the feature space get mixed with noise, leading to inter-
ruptions in segmentation and premature termination in neuron tracing
results. To address this issue, we propose NeuroLink to add continuity
constraints to the network and implicitly model neuronal morphology
by utilizing multi-task learning methods. Specifically, we introduce the
Dynamic Snake Convolution to extract more effective features for the
sparse tubular structure of neurons and propose a easily implementable
morphology-based loss function to penalize discontinuous predictions. In
addition, we guide the network to leverage the morphological information
of the neuron for predicting direction and distance transformation maps
of neurons. Our method achieved higher recall and precision on the low-
contrast Zebrafish dataset and the publicly available BigNeuron dataset.
Our code is available at https://github.com/Qingjia0226/NeuroLink.

Keywords: Neuronal segmentation · Multi-Task learning · Neuronal
morphology · Fluorescence microscopy

1 Introduction

With the development of imaging technology, neuroscientists are able to obtain
large-scale optical neuronal images for studying cell morphologies and neuronal
circuits [1]. 3D neuron reconstruction (i.e., neuron tracing) aims to obtain a digi-
tized tree representation of neurons from these images. Classic rule-based neuron
tracing algorithms such as local method neuTube [5] , global method APP2 [24],
meta method ENT [20] excel in processing high-quality single-neuron images,
yet they encounter limitations when faced with long projection axonal branches
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[12]. However, in whole-brain imaging, the uneven distribution of fluorescent la-
bels in neurons frequently leads to discontinuity and weakened filament signals
[27]. Neurons show a certain morphological structure at the global level, but can
only present sparse and weak signals at the local level. Segmenting neurons on
fluoroscopic images is therefore a unique and intractable task even within the
broader field of computer vision.

To denoise the images and enhance weak signals, many methods[26, 21, 11,
8] use Convolutional Neural Network (CNN) for image segmentation as a pre-
processing step. During training, they simply utilize Dice and Binary CrossEn-
tropy (BCE) loss, which lack constraints on the morphological structure of neu-
rons. The subsequent work focus on three directions for the retrieval of lost signal
and correctness of the topology: designing topology-based loss functions, model-
ing neuron morphology, and post-processing segmentation results. Certain works
punish different topological structures using loss functions like discrete Morse
theory[6] and persistent homology[4], but their theoretical and computational
methods are intricate and need to be carefully designed to assure differentiabil-
ity. [3] compare the neuron segmentation results with existing morphologies for
adversarial learning to learn the neuron morphology, but the reconstructed tar-
get dataset and existing morphologies may not follow the same distribution. [22]
and [27] introduce multi-task learning, respectively predicting Flux features and
distances to the centerline to improve neuron segmentation, but the tasks are
relatively singular and do not utilize broader features of neurons. Some works[7,
29] use heuristic post-processing algorithms to repair predicted results of frac-
tures to restore neuron morphology, but their rule applicability is limited and
challenging to generalize to large-scale data. Other methods, such as derivative
truncated gamma transformation and adding penalties for false negative vox-
els[13], mitigate false negative issues but do not consider neuron morphology.

In this paper, we propose a new neural segmentation method called Neu-
roLink, which guides the network to learn the morphological features of neurons
in a spatially continuous manner to improve the segmentation in regions with
weak signal. Specifically, we introduce Dynamic Snake Convolution (DSC) to the
low-level feature map and design multiple convolutional kernel offsets to extract
multi-perspective features. The convolutional kernels adaptively fit the tubular
or branching structures of neurons at different positions, which helps maintain
the local continuity. In addition, we propose a Weighted Local Connectivity
(WLC) loss to detect long-range false negative segmentation fragments by uti-
lizing multiple dilation operation and applying weighted penalties. The WLC
loss also penalizes incorrect connections to assist the network in determining the
neuronal connectivity. Furthermore, we design a multi-task learning approach
that guides the network to learn relevant representations of morphology by pre-
dicting the local orientation of neurons and the distance to the central line. We
conducted experiments on the Gold166 and Zebrafish datasets to validate the
effectiveness of our algorithm.

The main contributions of our work are summarized as follows: (1) We in-
troduce DSC into U-Net and propose the WLC loss to improve the continuity
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Fig. 1. The framework of NeuroLink. The green blocks in the second and third layers
of the network correspond to the DSC module. The network produces outputs with
five channels, comprising probability map, distance transformation map, and three
components of direction vector.

of network predictions. (2) We design a novel multi-task learning approach that
leverages distance and orientation predictions to steer the model towards ac-
quiring representations of neuron morphology. (3) Experiments on the Gold166
and Zebrafish datasets demonstrate that our method significantly enhances the
recall and F1 score of neuron tracking in low-contrast images.

2 Method

The framework of our method is illustrated in the Fig.1, which adopts a classic
encoder-decoder architecture. The features extracted by DSC that better match
the tubular structure of neurons, along with the collaborative constraints of
multi-task learning, enable the model to acquire stronger morphological charac-
teristics of neurons.

2.1 DSC Module: To Learn Better Local Feature

Neurons appear fragile and curved under optical microscope. Capturing effective
features from such sparse structures poses a challenge for traditional convolu-
tional kernels. Inspired by the DSC[16] which dynamically adjusts the convolu-
tional receptive field to accommodate slender structures, we explored the optimal
implementation of DSC and found it to be more effective on low-dimensional fea-
ture maps of neuron images. We then inserted it into the 2nd and 3rd layers of
the U-Net. The process by which the DSC module obtains the shape of the
convolution is depicted in Fig.1. We start by employing a 3×3×3 convolution to
predict an offset map of the same size as the input feature map. At each location
on the feature map, the convolution kernel is centered, and by accumulating the
values in the offset map, it extends to both ends. To address complex branching
structures, we extract features from multiple perspectives at each position and
then fuse them together.

To better guide the learning of displacement patterns by DSC, we propose a
novel data augmentation method. By eroding local regions of the original image
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Fig. 2. A toy example of lFN . We identify false negative voxels sequentially through
dilation and apply weighted penalties.

to simulate weak signals resulting from the uneven distribution of fluorescence
signals in imaging, we force the network to utilize neuron morphology informa-
tion to make predictions at locations of fluorescence signal discontinuities. We
randomly select positive sample points and perform erosion operations three
times in a 20 × 20 × 10 region centered at each point in the original image.

2.2 WLC Loss: To Learn Long-range Connectivity

DSC contributes to improving short-range continuity in neuron segmentation;
however, it does not prevent the lost of large segmentation of neurons. In this
section, we propose WLC loss, which complements DSC by penalizing longer
false-negative predictions.

A naive approach to dealing with a long missing segmentation in a neuron
branch is binary search method. This involves retrieving a portion in the middle
of the lost parts, gradually filling in the gaps, and finally connecting two seg-
ments together. Neuron tracking methods can also be facilitated by splitting a
big gap into smaller gaps. This inspires us to assign higher penalty weights to
false-negative voxels that are morphologically further away from the prediction.
Dilation procedures may be used to carry out the aforementioned concept. Fig.
2 shows the schematic representation of the complete procedure.

Denote the dilation operator as d, the segmentation result as S. By multi-
plying d(S) − S with the ground truth G, false-negative voxels F that are one
voxel away from S can be obtained. We merge F into S and continue with dila-
tion to sequentially obtain false-negative voxels along the neurons. We perform
the above operations n times and apply penalty weight iα (α > 1) for the F (i)
acquired from the i-th operation in order to penalize F that are morphologically
farther from the S. Consequently, we obtain the expression for lFN :

lFN =

∑n
i=3 i

α||G · (d(si)− si) ||1∑
G

, (1)

where si represents the segmentation result obtained after merging the false-
negative voxels from the first i iterations. To eliminate the influence of the neuron
radius, we ignore the voxels obtained from the first two operations.
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Meanwhile, to suppress false-positive connections between neurons that are
close to each other but belong to different branches, we design the false positive
loss lFP to penalize such erroneous connections.

lFP =

∑n
i=3(n− i+ 3)α||S · (d(gi)− gi) ||1∑

S
. (2)

WLC loss is the weighted sum of the lFN and lFP :

LWLC = βlFN + (1− β)lFP . (3)

2.3 Multiple Tasks: Learning Local Shape and Direction

By designing multiple tasks, we guide the network to utilize information from
a larger receptive field to predict relevant labels, enabling the model to learn
intrinsic features related to neuron morphology and structure.

Voxel Classification. The neuron annotation may lack radius information
or contain inaccuracies in the provided radius information. Segmentation ground
truth is often generated through certain approximations. In order to reduce the
inaccuracies caused by approximations and address extreme class-imbalance, We
utilize the Tversky loss[17] to further emphasize the recall of the segmentation
results. The formula is as follows:

LT =

∑N
i=1 p0ig0i∑N

i=1 p0ig0i + (1− γ)
∑N

i=1 p0ig1i + γ
∑N

i=1 p1ig0i
, (4)

where p0i and p1i is the probability of voxel i be a neuron and background
respectively. g0i is 1 for a neuron voxel and 0 for background and vice verse for
the g1i. N is the total number of voxels.

Distance Transform Map. We first compute the Euclidean distance trans-
form map T (p)[19]. Instead of using Gaussian kernel [27] decaying rapidly, we
propose to generate label through linear decay. The label is defined as follows:

t =

{
1− T (p)

R for T (p) < R
0 otherwise

. (5)

The Mean Squared Error (MSE) is implemented between the predicted and the
target distance transform maps, which can be represented as:

Ldis =

∑
i [mi − ti]

2

N
, (6)

where mi is the predicted map at voxel i and ti is the voxel value in the corre-
sponding target distance transform map.

Direction. In addition to assisting the network in comprehending neuronal
morphology, the prediction of direction can also be utilized for post-processing[29,
2, 26]. For point Pi(x1, y1, z1) on the centerline, there is a unique parent node
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Pparent(x2, y2, z2) in the 26-neighborhood. We define the tangential vector di-

rection at point Pi as ∆i =
(x1−x2,y1−y2,z1−z2)√

(x1−x2)
2+(y1−y2)

2+(z1−z2)
2
. The average direction

vector of the surrounding 5 points is used as the label ∆.
Using MSE loss to penalize the non-collinearity between the ground truth

direction ∆g and the predicted direction∆p:

Ldir =

∑
i

[
min

[
(∆g −∆p)

2
, (∆g +∆p)

2
]]

N
. (7)

The total loss is the sum of all losses in multi-task training:

L = LT + LWLC + Ldir + Ldis. (8)

3 Experiments

3.1 Datasets and Evaluation Metrics

Gold166. The Bigneuron[14] project consists of images from various laboratory
environments, different species, and varying sizes. The Gold166 dataset, com-
prising 166 representative neurons from Bigneuron with expert annotations, is
commonly utilized for algorithm testing. Due to the significant differences within
Gold166, we firstly select 28 images for training and 75 images for testing as[22].
For the second experiment, we randomly choose a ratio of 5:2:3 for training,
validation, and testing for all images.

Zebrafish Dataset. The zebrafish dataset comprises confocal microscopy
images of 6-day-old zebrafish larvae, with size of around 1000 × 2000 × 250
voxels and resolution of 0.5 × 0.5 × 1 µm/voxel. The dataset is characterized
by small cell body regions, numerous long-range axons and weak signals. We
randomly select 61 images for training, 13 for validation and 29 for testing.

Evaluation Metrics. We use the most widely used Precision (PRE), Recall
(REC) and F1 measure as primary evaluation metric. A point within 4 voxels to
the ground truth was classified as a true point. Besides, the Structural Distance
(SD) and substantial spatial distance (SSD) metric[15] is used to evaluate the
distance between the target neuron nodes and the reconstructed neuron nodes.
Miss-Extra-Scores (MES)[25] is calculated to measure the expected parts of the
centerline and the undesired components.

3.2 Implementation Details

The parameters α, β and n of the proposed WLC loss are set as 2, 0.5 and 12
respectively. In Eq.4 we set γ = 0.7. In Eq.5 we choose R=10. We leverage the
operation in [18] to facilitate rapid and efficient dilation in PyTorch.

For data augmentation, we use image flipping, random rotation, random
changes in brightness and contrast, misalignment, and the erosion operation
around neurons. The tracking algorithm APP2[24] is applied to the weighted
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image with a segmentation-to-original image ratio of 4:1 to obtain the tracking
results. Subsequently, the nodes are resampled to the 26-neighborhood connec-
tivity and compared with the ground truth.

An AdamW optimizer was employed with a cosine decay learning rate sched-
uler and linear warmup of 1000 iterations. The batch size and patch size are set
to 4 and 237 × 237 × 47. LeakyReLU and Group Normalization are applied.
Our method was implemented in PyTorch 1.12 and trained on Tesla V100 GPU.

3.3 Evaluation on Gold166 dataset

Table 1. Quantitative results on 75 neurons in Gold166 dataset.

Method SD↓ SSD↓ PRE↑ REC↑ F1↑ MES↑

cl
a
ss
ic

APP2[24] 10.614 17.311 0.795 0.731 0.765 0.592
ENT[20] 12.565 16.809 0.507 0.512 0.497 0.320
FMST[28] 7.623 14.108 0.673 0.663 0.664 0.506
ON[9] 7.946 13.787 0.590 0.599 0.589 0.473

d
ee
p
le
a
rn
in
g

TopNet[10] 7.080 11.530 0.709 0.563 0.624 0.408
tubular flux model[22] 5.045 12.956 0.826 0.747 0.781 0.616

our base 9.362 12.242 0.901 0.914 0.902 0.753
+mT 6.292 8.954 0.901 0.915 0.901 0.754

+mT+DSC 3.338 6.265 0.904 0.935 0.911 0.762
+mT+WLC 3.016 5.960 0.912 0.929 0.915 0.760

NeuroLink(Ours) 2.906 5.817 0.913 0.929 0.915 0.760

mT: multi-Task, our base: vanilla 3D U-Net.

Table 2. Results of all categories of neurons in Gold166 dataset.

Method PRE↑ REC↑ F1↑

Li-2017[11] 0.7073 0.5197 0.5979
Huang-2020[8] 0.5964 0.508 0.5487
MP-NRGAN[3] 0.7117 0.5563 0.6245
SGSNET[27] 0.6920 0.5047 0.5837
NRTR[23] 0.7044 0.6533 0.6779

NeuroLink(Ours) 0.6717 0.7657 0.7156

Table 1 presents the quantitative results comparing the different implemen-
tations of our method with popular methods in Gold166 dataset. Our method
not only tracked more subtle signals significantly improving the recall but also
get the smaller SD, indicating reconstruction results closer to the ground truth
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Ground Truth APP2 MOST neuTube ENT SGSNet Ours Direction

Fig. 3. Visualization of ground truth and neuron tracing results on Zebrafish dataset
by different algorithms as indicated. The reconstruction results of deep learning-based
method are displayed on its segmentation. We also show the predicted direction map
of NeuroLink, with directions in the x,y,z axes represented by blue, green, and red.

annotations. Experimental results indicate that multi-task method 3D tubular
flux model[22] and our multi-task strategy improved SD and SSD performance.
DSC effectively increase the recall rate, but the continuous convolution kernels
erroneously connect irrelevant structures around the neurons, reducing precision.
The incorporation of WLC loss address this issue, achieving the best results.

Table 2 shows the performance of popular deep learning-based methods on
the entire Gold166 dataset. Our method achieved higher recall and F1 scores
while maintaining similar precision.

3.4 Ablation study on Zebrafish Dataset

To validate the effectiveness and optimal implementation of our module, we con-
ducted experiments on the Zebrafish dataset. Figure 3 presents the results on
a challenging neuron image from Zebrafish dataset, showing that representative
classic methods exhibit significant errors on such low-contrast, weak-signal neu-
ron image. Outstanding deep learning methods, such as SGSNet[27], are imper-
fect in weak signal areas, resulting in premature termination of neuron tracing.
Our method obtain the complete morphology of neurons.

Table 3 presents the quantitative results of different methods. The experi-
ment shows multi-task method can improve the accuracy of network predictions,
but it do not enhance recall. WLC loss reduces the missing of large neuron seg-
mentation, improving the recall by 10%. Besides, implementing DSC in the 2nd
and 3rd layers of U-Net yields better performance than in the 4th and 5th layers.
Our method improved the F1 score by 25.6% compared to APP2.

4 Conclusion

In this paper, we aim to mitigate the discontinuous segmentation caused by weak
signals by introducing DSC and proposing WLC loss to impose constraints. Ad-
ditionally, we propose a novel multi-task learning approach to fully leverage
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Table 3. Performance on Zebrafish dataset.

Method SD↓ SSD↓ PRE↑ REC↑ F1↑ MES↑

APP2 26.744 35.443 0.793 0.677 0.678 0.587
base 31.303 34.962 0.869 0.814 0.836 0.809
+mT 22.801 30.916 0.983 0.775 0.825 0.756

+WLC+mT 11.553 20.114 0.981 0.874 0.912 0.874
+DSC-23+mT 7.595 17.935 0.982 0.889 0.928 0.889

+DSC-45+WLC+mT 14.281 22.683 0.978 0.857 0.893 0.855
Ours 6.880 16.253 0.984 0.897 0.934 0.899

mT: multi-Task, base: vanilla 3D U-net,
DSC-23: DSC in 2nd and 3rd layers, DSC-45: DSC in 4th and 5th layers.

the information of neurons and learn morphology features. NeuroLink exhibits
significant advantages on different datasets. This approach of incorporating con-
tinuity priors and modeling morphology of the target can also inspire other tasks
in computer vision that involve segmenting continuous and sparse objects.
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