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Abstract. Resting-state functional magnetic resonance imaging (rs-
fMRI) serves as a potent means to quantify brain functional connectivity
(FC), which holds potential in diagnosing diseases. However, conventional
FC measures may fall short in encapsulating the intricate functional
dynamics of the brain; for instance, FC computed via Pearson correla-
tion merely captures linear statistical dependencies among signals from
different brain regions. In this study, we propose an affinity learning
framework for modeling FC, leveraging a pre-training model to discern
informative function representation among brain regions. Specifically, we
employ randomly sampled patches and encode them to generate region
embeddings, which are subsequently utilized by the proposed affinity
learning module to deduce function representation between any pair
of regions via an affinity encoder and a signal reconstruction decoder.
Moreover, we integrate supervision from large language model (LLM) to
incorporate prior brain function knowledge. We evaluate the efficacy of
our framework across two datasets. The results from downstream brain
disease diagnosis tasks underscore the effectiveness and generalizability of
the acquired function representation. In summary, our approach furnishes
a novel perspective on brain function representation in connectomics. Our
code is available at https://github.com/mjliu2020/ALBFR.

Keywords: Affinity learning · Brain function representation · rs-fMRI ·
Brain disease diagnosis

1 Introduction

Resting-state functional magnetic resonance imaging (rs-fMRI) is a valuable
tool in the diagnosis of brain diseases, particularly via measurement of brain
functional connectivity (FC) [3, 17, 22]. The rs-fMRI records the spontaneous
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blood oxygen-level dependent (BOLD) fluctuations during rest [16]. The FC is
typically defined as the statistical dependencies between two neurophysiological
signals from different parts of the brain [2]. The deviations in FC indicate
underlying dysfunction associated with diverse brain diseases [6].

In recent years, graph methods are prevalent to analyze brain FC for disease
diagnosis [4,5,9]. Specifically, the brain can be conceptualized as a graph, wherein
nodes correspond to distinct brain regions or regions of interest (ROIs), and edges
denote the FC between these regions [8]. Therefore, the partition of brain regions
and the measurement of FC become particularly important. Conventionally, the
FC is assessed through Pearson correlation coefficient (PCC) [12]. However, the
pre-defined linear correlation may be insufficient to characterize the complex
connectivity patterns between brain regions.

With the development of deep learning techniques, many studies have em-
ployed deep networks to establish FC from BOLD signals. For instance, Zhang et
al. [20] designed a non-linear attention mechanism to model complex function
representation and successfully realized the diagnosis of brain diseases. However,
it relies on training a supervised model to generate FC, which necessitates re-
training from scratch when applied to new datasets. Zhang et al. [21] proposed
an unsupervised graph structure learning method for capturing characteristics of
functional brain network. However, they utilize PCC-based FC as supervision,
resulting in suboptimal performance. Moreover, the aforementioned deep learning
approaches rely on fixed brain region definitions, thereby limiting the universality
of well-trained models across diverse brain parcellations. Recently, Liu et al. [10]
has demonstrated that random sampling rather than atlas-fixed brain regions
enables a more flexible brain representation.

To generate more informative FC, we propose an affinity learning based
brain function representation framework. Benefiting from the inherent powerful
learning capabilities of deep learning, the affinity learning model can encode
significantly richer brain functions than PCC. Specifically, we adopt randomly
sampled patches to improve the generality of our method in brain parcellation.
These patches are encoded as region embeddings. Next, we present an affinity
learning module for generating function representations in connectomics upon
them. In addition, we introduce brain function knowledge from large language
model (LLM) to guide the affinity learning. Ultimately, we employ the learned
function representation to diagnose brain diseases. We validate our approach on
ABIDE and ADNI datasets. The experimental results indicate that our proposed
method not only outperforms the comparison methods but also provides a new
way of function representation.

Our main contributions are summarized as follows. (1) We propose an affinity
learning model for whole brain function representation in connectomics. (2) We
integrate the knowledge of LLM to guide the affinity learning, and introduce
this strategy for the first time in brain function representation. (3) We provide a
pre-trained model to produce function representation, which improves the perfor-
mance of brain disease diagnosis. Furthermore, the pre-trained model exhibits
transferability across a spectrum of diseases and diverse brain parcellations.
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Fig. 1. The architecture of the proposed affinity learning based brain function represen-
tation method and its application in the diagnosis of brain diseases.

2 Methodology

The architecture of the proposed method is illustrated in Fig. 1. We randomly
sample patches and encode them as region embeddings. Next, the affinity learn-
ing module generates the function representation through an encoder-decoder
structure. Furthermore, we utilize the knowledge from LLM to guide the affinity
learning, namely LLM-guided supervision. In applications, the pre-trained model
is employed to generate function representation as a graph, which can effectively
diagnose brain diseases, i.e., by graph-based classification.

2.1 Region Embedding

We design a region embedding strategy based on randomly sampling patches.
It includes patch extraction and patch encoding, and finally obtains the region
embedding for the subsequent affinity learning.

Patch Extraction. Random patch sampling is not constrained by the fixed
brain parcellation of atlases. For each subject, 3D patches are randomly sampled
in gray matter. The average signal of the gray matter within each patch serves
as the functional signal s ∈ R1×t for that region. The signal is normalized to
zero mean and one standard deviation as done in [23]. We choose the center
coordinate p of each region in the MNI space to depict its position in the brain.
The size and number of patches are 9×9×9 and 256 respectively, as used in [10].
In this way, each subject can provide C2

256 = 32640 combinations of brain region
signals for the pre-training model.

Patch Encoding. We design projection layer to learn low-dimensional BOLD
signal features that reflect brain function in a more compact latent space. At



4 M. Liu et al.

the same time, we adopt learnable linear transformation matrix W to map the
position coordinates of the patch to the position embeddings and integrate them
with the signal features to the region embeddings e:

e = FFN(Conv(s)) +Wp, (1)

where Conv represents one dimensional convolution, followed by a Feedforward
Network (FFN) to obtain signal feature of size 64. The one dimensional convo-
lution consists of four distinct convolution layers characterized by parameters as
in [11]: filter size of (4, 4, 3, 1), stride of (2, 1, 2, 1), and output channel of (32,
64, 64, 10). The activation layer is rectified linear unit (ReLU) inserted between
layers.

2.2 Affinity Learning Module

The affinity learning module consists of affinity encoder and signal reconstruction
decoder. The former learns the signal similarity between any two regions, which
describes brain function in connectomics. The latter reconstructs the target signal
based on the learned similarity with reference to the other signal.

Affinity Encoder. First, a shared learnable transformation matrix W is applied
to a pair of region embeddings (ei, ej) to obtain sufficient expressive power. Next,
we calculate the similarity as follows:

rij = tanh(FFN(Wei‖Wej)), (2)

where ‖ represents the concatenation operation in the feature dimension. The
similarity rij ∈ R1×d is the output of the affinity encoder, which serves as
function representation between regions. The symbol d denotes the dimension of
learned function representation.

Signal Reconstruction Decoder. The decoder reconstructs the target signal
srec based on the learned function representation rij and the reference signal
sref . Initially, the learned function representation is aligned with the reference
signal in dimension via a Feedforward Network, then added to the reference
signal, and subsequently utilized for target signal reconstruction:

srec = FFN(FFN(rij) + sref ). (3)

It is noteworthy that in the model training, a pair of signals are mutually
referenced to reconstruct the other signal.

The affinity learning model is subjected to self-supervised optimization, aiming
to minimize the Mean Square Error (MSE) between the original fMRI signals
and their corresponding reconstructions, denoted as Lrec.
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2.3 LLM-guided Supervision

To enhance the elucidation, we introduce LLM-guided supervision to refine
the learned function representations. Presently, ChatGPT is acknowledged as
an LLM endowed with profound knowledge reservoirs [1]. A compendium of
brain regions linked to the Precentral_L can be obtained by querying ChatGPT
with the prompt : "Which brain regions are affiliated with the Precentral_L in
the Automated Anatomical Labeling (AAL) atlas?" Subsequently, we establish
the correlation between the Precentral_L and the brain regions identified by
ChatGPT as associated with Precentral_L, denoted mathematically as 1. In
contrast, the association between Precentral_L and the remainder of the brain
is designated as 0. Following a systematic execution of the aforementioned
procedures for all brain regions delineated in the AAL atlas, we derive a LLM-
guided supervision matrix U ∈ Rm×m (m = 116).

During the optimization of the affinity learning model, the learned function
representation passes through an FFN and computes an MSE loss with the
LLM-guided supervision matrix U :

Lllm = sim(FFN(rij),Uij), (4)

where sim() is an MSE measure. The rij represents the learned function rep-
resentation between region i and j. Notably, the randomly sampled patch is
designated as a specific brain region in AAL according to the maximum overlap
first principle. We incorporate prior knowledge to guide the affinity learning,
thereby ensuring outcomes reflect brain function.

The ultimate objective function is formulated as L = Lrec + αLllm, where α
is the trade-off hyperparameter.

2.4 Brain Disease Diagnosis

We introduce a brain disease diagnosis task to assess the acquired function
representation. The diagnosis process involves two stages. Initially, we conduct
pre-training of an affinity learning model. Subsequently, in the second stage, we
freeze the pre-trained model and derive the function representation for whole
brain. As illustrated in Fig. 1, the representation is compressed by an FFN to
yield an n× n adjacency matrix, where each row of the matrix constitutes the
node features, and the matrix elements denote the weights of graph edges. The
graph is then fed into a classifier comprising three graph convolutional network
(GCN) layers with ReLU activation functions, respectively. We minimize the
cross-entropy loss between predictions and labels to optimize the classifier. This
strategy ensures that the acquired function representation remains agnostic to
specific tasks, allowing for a fair evaluation of its effectiveness and generalizability.
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(a) Signal Reconstruction on ABDIE Dataset (b) Signal Reconstruction on ADNI Dataset

Fig. 2. Examples of reconstructed and measured signals, together with the Pearson
correlation between them on two datasets.

3 Experimental Results

3.1 Data Preprocessing and Experimental Settings

We evaluate our method on two brain diseases, including the autism spectrum
disorder (ASD) and the mild cognitive impairment (MCI). For the ASD diagnosis
task, the dataset is from the publicly available Autism Brain Imaging Data
Exchange I (ABIDE I). We employ the largest site (NYU), which includes
preprocessed rs-fMRI of 170 subjects (73 ASDs and 97 NCs). We download the
preprocessed data with configurations as using DPARSF toolbox [18], band-pass
filtering (0.01-0.1Hz), and without global signal regression. For the MCI diagnosis
task, we utilize the publicly available Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset, focusing on data from the six sites with the largest cohort sizes.
A total of 333 rs-fMRI samples are selected from 148 distinct subjects, comprising
60 MCIs and 88 NCs. The rs-fMRI data undergoes standardized preprocessing,
which is available online.

Our framework is implemented with PyTorch on a single GPU for both
tasks. The data is split into training, validation, and test set according to
3:1:1 for pre-training. The average performance of the subject in the test set is
reported. The PCC is adopted to evaluate the performance of the pre-training
task [15]. The classification performance is evaluated using four metrics: accuracy
(ACC), sensitivity (SEN), specificity (SPE), and area under the receiver operating
characteristic curve (AUC).

3.2 Signal Reconstruction

The pre-training task involves signal reconstruction in brain regions. The mean
PCC between reconstructed and measured signals in the test set reaches 0.539
and 0.690 respectively on the ABIDE and ADNI datasets. The reconstructed
signals, showcasing varying performance, are illustrated in Fig. 2. It is evident
that the model adeptly predicts numerous characteristics of the original signal.

3.3 Classification Results

To verify the effectiveness of our proposed approach, we compare with the
following methods in the diagnosis of ASD and MCI. The FC calculated by
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Table 1. Diagnosis results of ASD and MCI. The term Lllm is for the LLM-guided
supervision.

Methods ASD vs. HC MCI vs. HC
ACC AUC SEN SPE ACC AUC SEN SPE

PCC-FC + MLP 0.727 0.699 0.842 0.707 0.672 0.667 0.649 0.679
BrainNetCNN [7] 0.697 0.699 0.842 0.671 0.705 0.690 0.730 0.698
BrainGNN [9] 0.697 0.643 0.947 0.652 0.738 0.660 0.838 0.711

KD-Transformer [20] 0.758 0.703 0.895 0.733 0.738 0.752 0.892 0.696
BrainUSL [21] 0.581 0.525 0.901 0.148 0.707 0.691 0.806 0.577
Ours (w/o Lllm) 0.758 0.771 0.947 0.724 0.705 0.662 0.946 0.640

Ours 0.788 0.801 0.895 0.769 0.754 0.747 0.892 0.717
Ours (ASD→MCI) - - - - 0.754 0.669 0.919 0.710
Ours (MCI→ASD) 0.758 0.711 0.947 0.724 - - - -

conventional PCC is followed by multilayer perceptron (MLP) as a classifier.
BrainNetCNN [7] is convolutional neural networks for brain network analysis.
BrainGNN [9] is a graph neural network (GNN) framework tailored for fMRI
data and brain disorder diagnosis. KD-Transformer [20] is a Transformer-based
FC modeling and analysis framework for brain disease diagnosis. BrainUSL [21] is
an unsupervised graph structure learning framework for brain network analysis.

Comparison with SOTA. As shown in Table 1, our results are superior to the
comparison methods. For the diagnosis of ASD, our method achieves the best
ACC of 0.788, the best AUC of 0.801, and the best SPE of 0.769. It suggests
that our proposed method can sufficiently capture brain information for function
representation to boost brain disease diagnosis. For the diagnosis of MCI, similar
conclusions can be drawn from Table 1. Specifically, our method achieves the
best ACC of 0.754, and the best SPE of 0.717. Overall, the results in Table 1
prove that our proposed method is effective and general.

Ablation Study. We conduct ablation study on the proposed LLM-guided
supervision to illustrate its effectiveness. As shown in Table 1, compared with
no LLM-guided supervision, our method improves ACC by 0.030 and 0.049 on
ASD and MCI diagnosis, respectively (Row 8, Row 9). It indicates that the
incorporation of prior knowledge enhances the learned affinities, aligning them
more closely with the complex brain function, thereby boosting performance.

Transfer Learning Study. We pre-train on one dataset and apply the pre-
trained model on another dataset to obtain function representation for brain
disease diagnosis. The results are shown in the third part of Table 1. We achieve
competitive results in comparison to other methods. It illustrates the generality
of our proposed model, that is, a well-trained affinity learning model can be
directly applied to unseen datasets without fine-tuning.
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(a) Parameter Sensitivity (b) Discrepancy Maps of Two Channels 

  visual somatomotor  dorsal attention ventral attention

 limbic/basal ganglia frontoparietal default

Visual Network Somatomotor Network Dorsal Attention Network
Ventral Attention Network Limbic Network/Basal Ganglia
Frontoparietal Network Default Mode Network

Fig. 3. Parameter sensitivity analysis and brain network analysis: (a) The performance
of various dimensions of the learned function representation on ASD diagnosis; (b)
Discrepancy maps between ASD and NC groups of two channels from learned function
representation.

3.4 Analysis and Discussion

In this section we perform a parameter sensitivity analysis for the dimension of
learned function representation, which plays a key role in representation capability.
In addition, the learned function representation should reflect the brain function,
which is investigated by brain network analysis.

Parameter Sensitivity Analysis. An important hyperparameter of the affinity
learning module is the dimension of the learned function representation, so
we investigate the effect of it on performance. We conduct experiments under
dimension settings of 1, 4, 8, 16, 32, 64, respectively, and the results are shown in
Fig. 3 (a). We observe that the performance shows a trend of first improvement
and then decline. It may be because small dimensions are insufficient to represent
complex brain function and too large dimensions contain noisy interference.
Therefore, we choose 16 as the dimension of the learned function representation.

Brain Network Analysis. To explore the significance of the learned function
representation, we map each channel of the learned function representation with
Yeo 7 brain networks [19], which are influential network identification scheme
derived from rs-fMRI. Specifically, we use AAL atlas to parcellate brain regions for
ease of comparison. We compute the disparity in learned function representations
between the NC and ASD groups, subsequently correlating them with the Yeo 7
brain networks on a per-channel basis using PCC measures. The two channels with
the largest PCC values (0.623 and 0.628) are shown in Fig. 3 (b), and all channels
are detailed in supplementary materials. We observe that the most significant
differences between the ASD and NC groups are in the somatomotor network and
the default mode network, which is consistent with previous literatures [13,14].
It reveals that our proposed approach learns significant function representation
for disease diagnosis.
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4 Conclusion

In this paper, we introduce an affinity learning framework aimed at acquiring
informative brain function representation in connectomics. We evaluate the
effectiveness of our proposed approach across two distinct datasets, yielding
promising performance. Future endeavors will involve validating our approach
on additional datasets and investigating the association between acquired brain
function representation and cognitive tasks.
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