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Abstract. Diagnosis of lymph node (LN) metastasis in computed to-
mography (CT) scans is an essential yet challenging task for esophageal
cancer staging and treatment planning. Deep learning methods can po-
tentially address this issue by learning from large-scale, accurately la-
beled data. However, even for highly experienced physicians, only a por-
tion of LN metastases can be accurately determined in CT. Previous work
conducted supervised training with a relatively small number of anno-
tated LNs and achieved limited performance. In our work, we leverage
the teacher-student semi-supervised paradigm and explore the potential
of using a large amount of unlabeled LNs in performance improvement.
For unlabeled LNs, pathology reports can indicate the presence of LN
metastases within the lymph node station (LN-station). Hence, we pro-
pose a pathology-guided label sharpening loss by combining the metas-
tasis status of LN-station from pathology reports with predictions of
the teacher model. This combination assigns pseudo labels for LNs with
high confidence and then the student model is updated for better perfor-
mance. Besides, to improve the initial performance of the teacher model,
we propose a two-stream multi-scale feature fusion deep network that
effectively fuses the local and global LN characteristics to learn from la-
beled LNs. Extensive four-fold cross-validation is conducted on a patient
cohort of 1052 esophageal cancer patients with corresponding pathology
reports and 9961 LNs (3635 labeled and 6326 unlabeled). The results
demonstrate that our proposed method markedly outperforms previous
state-of-the-art methods by 2.95% (from 90.23% to 93.18%) in terms
of the area under the receiver operating characteristic curve (AUROC)
metric on this challenging task.

Keywords: Lymph node metastasis · Two stream multi-scale network
· Semi-supervised Learning · Pathology-guided label refinement.
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1 Introduction

Esophageal cancer (EC) is the sixth leading cause of cancer death worldwide,
accounting for 1 in 20 cancer deaths [23]. Lymph node (LN) metastasis is one
of the most important prognostic factors in EC [1]. Accurate identification of
preoperative LN metastasis is essential for making treatment decisions (surgery
vs neoadjuvant) and determining treatment plans (surgical resection area and
radiotherapy clinical target volume [CTV]) [8–10]. Therefore, LN metastasis as-
sessment is of high clinical importance in EC diagnosis and treatment.

Assessing LN metastasis status in CT is a challenging task even for expe-
rienced physicians. Although size is an important indicator in distinguishing
metastatic involvement, with larger nodes exhibiting a higher propensity for
malignancy and smaller nodes displaying a greater likelihood of benign status,
size as a sole predictive factor is not reliable. For instance, LN size demonstrates
a sensitivity ranging from 60%-80% in identifying metastatic LNs in lung can-
cer patients [17, 21]. Considering the subtle differences of texture and intensity
between malignant and benign LNs, it is extremely difficult and sometimes in-
feasible for physicians to annotate LN metastasis.

With the remarkable success of deep learning in various medical imaging
computer-aided diagnosis (CAD) tasks [22,27], preliminary attempts have been
made to use deep learning for LN abnormality diagnosis [3, 12, 15, 20, 28]. Roth
et al. proposes a two-stage 2.5D convolutional neural network (CNN) to detect
and classify enlarged LNs in mediastinal and abdominal CT scans [19, 20]. Lee
et al. examines different CNNs capacity to diagnose cervical LN metastasis in
CT using 202 thyroid cancer patients [15]. Kann et al. train a dual network, i.e.,
one for size-invariant and one for size-preserving, to classify metastatic LNs and
extranodal extension (ENE) using CT scans of 270 head and neck cancer pa-
tients [11]. These studies employ the supervised learning, which ideally requires
a large number of labeled LN data. However, it is extremely difficult to acquire
the LN metastasis annotation. Therefore, it is of great benefit to incorporate a
large amount of unlabeled LN data to improve the performance.

Prior semi-supervised learning (SSL) methods such as the Π-model [14],
Mean Teacher [24], and MixMatch [2] have investigated similar scenarios, where
models are trained using both labeled and unlabeled data. Nevertheless, these
general SSL methods assume that there is not any relative label information in
the unlabeled set. In our setting, although LN instances are unlabeled, there
exists weak label information from pathology reports, which describe whether
there is LN metastasis in the surgery-resected LN-stations. If the pathology
report identifies a malignant LN-station, it indicates that there is malignant
LNs inside this station (note there are often multiple LNs in a LN-station).
Therefore, it is possible to utilize the pathology priors to develop a more effective
SSL method for LN metastasis classification.

In this work, we propose an effective SSL method to better handle unla-
beled LNs by using the priors from pathology reports. Specifically, we adopt the
teacher-student mechanism, where a teacher model is utilized to get prediction
scores, which then serve to guide the training of the student model. We propose a
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Fig. 1: Pipeline of the proposed framework. The left corresponds to the semi-
supervised process, where the proposed pathology-guided label sharpening com-
bines the teacher model predictions with information from pathology reports.
This combination produced high-quality pseudo labels, which are used for the
training of the student model subsequently. The right shows the details of net-
work structure. For the input 3D CT patch, it is first transposed into multiple
sets of 3-slice images with original and zoom-in size. Then, they are processed
in parallel through a two-stream 2.5D multi-scale feature fusion network.

pathology-guided label sharpening loss to better integrate the LN-station metas-
tasis information from pathology reports. For LN that the teacher model predicts
with high confidence and the predicted label is consistent with its corresponding
LN-station label confirmed in pathology report, we assign a pseudo label and
introduce an additional classification loss to train the student model. Besides, to
improve the initial performance of the teacher model, we first train a supervised
model with labeled LNs. We propose a two-stream 2.5D multi-scale feature fu-
sion deep network that effectively fuses the local and global LN characteristics
to learn from labeled LNs. Using four-fold cross-validation, we evaluate our ap-
proach on CT scans of 1052 EC patients with surgery-pathology reports. Among
them, the metastasis status of LNs in 310 patients is determined in their CT
scans by radiologists by referring to pathology reports, while the rest of patients
only have metastasis status of LN-stations from extracted from the pathology
report. Experimental results show that our method significantly surpasses the
state-of-the-art supervised and semi-supervised models and achieves the highest
area under receiver operating characteristic curve (AUROC) score of 0.9318 on
this challenging task.

2 Method

An overview of the proposed framework is illustrated in Fig. 1. A two-stream
2.5D multi-scale feature fusion network is proposed to simultaneously extract
and merge global and local features of LNs. The training scheme consists of
a supervised pre-training stage and a subsequent semi-supervised label mining
and learning. Specifically, a supervised model is pre-trained using limited but
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accurately labeled LN data. Then, we employ a teacher-student SSL paradigm
with the network’s weights initialized by the supervised pre-trained model to
iteratively mine large-scale but unlabeled LN data. We elaborate on the back-
bone design and the supervised training in Sec. 2.1 and describe the pathology
prior-guided semi-supervised label mining in Sec. 2.2.

2.1 Two-stream 2.5D multi-scale feature fusion network

In clinical practice, metastasis LNs are identified in CT by both global char-
acteristics (e.g., size, shape) and localized features (e.g., intensity inhomogene-
ity, textures, etc). With this observation, Kann et al. [11] proposes a 3D dual
network architecture to simultaneously extract global and local features via a
dimension-preserving network and a size-invariant network, respectively. Inspired
but different from [11], we enhance the LN local-global metastasis identification
in three folds. (1) 3D networks without proper pre-training weights are prone to
overfitting. We propose a two-stream (local and global stream) 2.5D backbone
to inherit the ability of joint feature extraction while allowing the leverage of
large-scale pre-trained weights in 2D natural image dataset, e.g., ImageNet [4].
We group the CT slices into multiple sets of 3-channel images to adapt the 3D
inputs for the 2.5D configuration. The adapted inputs are fed into the network to
extract 2D features independently. We then concatenate and fuse these 2D fea-
tures through a 1x1 convolution, producing the 3D context-aware fused feature.
(2) We adopt the MobileNetv3 as our backbone and further add a Feature Pyra-
mid Network (FPN) [16] to the last three feature layers to alleviate potential
information loss during hierarchical downsampling. The features generated by
different feature pyramids are then pooled and concatenated to produce a multi-
scale representation. (3) Besides the supervision at the final fused head, we add
side-supervision [6, 13] before fusing the two-stream outputs and conduct joint
optimization to facilitate each stream learning more accurate features. Formally,
this training objective can be formulated as:

LSUP = LBCE(fl(Xl), Y ) + LBCE(fg(Xg), Y ) + LBCE(ffuse(Xfuse), Y ) (1)

where Xl, Xg, Xfuse denote the feature extracted from local stream, global
stream, and fused output, respectively. fl, fg, ffuse denote the corresponding
classifiers, Y denotes the GT label and LBCE denote the BCE loss. This is the
supervised pre-training stage, which provides the initial model weight for the
subsequent teacher-student SSL.

2.2 Prior-guided label sharpening for semi-supervised training

To effectively leverage unlabeled LNs, we adopt a teacher-student mechanism
where the prediction scores produced by the teacher model on unlabeled LNs are
then used to guide the student model training. The teacher model and student
model share the same network described in Sec. 2.1, and are initialized with pre-
trained weights from the supervised procedure. Following [24], the student model



Metastatic Lymph Node Classification in Esophageal Cancer 5

is trained via backpropagation, while the teacher model is updated iteratively by
employing the exponential moving average (EMA) of the student model weights
during training. Denoting the weights of the teacher model and student model
at training step t as θ

′

t and θt, then θ
′

t can be updated as:

θ
′

t ← αθ
′

t−1 + (1− α)θt (2)

where α serves as a smoothing coefficient to regulate the rate of knowledge
update. In all our experiments, α is set to 0.999 following [24].

In previous SSL methods [2,14,24], since no prior knowledge is given for the
unlabeled data, the pseudo labels produced by the teacher model are directly
used to finetune the student model. In contrast, we have significant prior knowl-
edge that can be leveraged. From the pathology report, we can know whether
there is LN metastasis in corresponding LN-station. In other words, a malig-
nant LN-station has malignant LN, while a benign one means all LNs inside are
benign. After the supervised pre-training, the teacher model can generate pre-
dictions with considerable accuracy. Therefore, if the teacher model confidently
predicts LN within a malignant LN-station to be malignant, we can assign a
pseudo label to it and use these LNs to train the student model in a super-
vised manner. Specifically, for each malignant LN-station, we use a malignant
threshold β of 0.7 as determined in the ablation study. The LNs with prediction
scores above this threshold will be labeled as malignant (label=1). For benign
LN-station, we have a lower benign threshold γ of 0.3 to account for noise labels.
If an LN’s prediction score is below this, we label it as benign (label=0). The
pseudo labels for unlabeled LNs are updated every epoch. Before every epoch, we
randomly select a fixed number of LNs with assigned pseudo labels to supervise
the student model through an additional BCE loss. Combined with standard su-
pervised loss and unsupervised consistency loss in SSL, the overall loss function
is as:

LSSL = LBCE(P
l
S , Y

l) + w(t)LKL(P
u
T , P

u
S ) + ωLBCE(P

a
S , Ŷ

a) (3)

where P l
S , P

u
S , P

a
S denote student model’s prediction probability of labeled, un-

labeled, and assigned pseudo label LNs, while Pu
T is the probability of unlabeled

LNs predicted by the teacher model. Y l and Ŷ a are the GT for labeled LNs and
pseudo label for assigned LNs , respectively. LKL means KL divergence, ω is the
pathology-guided label sharpening loss weight and w(t) denotes weight ramp-up
function following [24].

3 Experiments

3.1 Experimental Settings

Dataset: We collected a dataset of 1052 esophageal cancer patients who un-
derwent esophagectomy treatment. Each patient has a preoperative contrast-
enhanced CT scan and a detailed pathology report after surgery indicating the
metastasis status of resected LN-stations. The median CT scan size is 512 ×
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512× 91 voxels with the median resolution of 0.795× 0.795× 5.0mm. Combin-
ing the automatic LN detection results [25] with a radiologist’s examination and
editing, we obtain 9961 LN masks (candidates without metastasis status). These
LN masks, along with the CT scan, are then cropped using a 64×64×16 ROI
centered on each 3D LN. Out of the 9961 LNs, 3635 LNs of 310 patients have
labels of metastasis status (188 positive and 3447 negative), which is confirmed
by the consensus of two radiologists according to the pathology report. The rest
of the 6326 LNs of 742 patients are unlabeled, yet these patients have pathol-
ogy reports indicating if an LN-station is metastatic or not. All experiments use
four-fold cross-validation with a 60%/15%/25% training, validation, and testing
split (at the patient level), respectively.
Implementation details: For supervised pre-training, MobileNetv3 [7] is used
as a backbone for each of the two streams. We apply a single 1x1 convolutional
layer for the multi-scale fusion, 3D slices fusion, and two-stream fusion. SGD
optimizer with a learning rate of 3.2e-4 and cosine annealing decay is adopted,
and the network is trained by 300 epochs with a mini-batch size of 32. For semi-
supervised training, The threshold β and γ for producing pseudo labels are set to
0.7 and 0.3, respectively, and the pathology-guided label sharpening loss weight
ω is set to 0.6. Detailed ablation results of these parameters are summarized
in Fig. 2. SGD optimizer with a learning rate of 1.28e-4 and cosine annealing
decay is adopted. We use a mini-batch of 128, with 16 labeled and 112 unlabeled
samples. The network is trained by 300 epochs for convergence.
Comparison methods: We compare with other methods in the following two
categories. 1) Supervised category: We evaluate widely-used CNN and Trans-
former classification networks: ResNet18 [5], MobileNetv3 [7] and MobileViTv2 [18]
in 2.5D and 3D architecture. We also conduct the comparison with the 3D Du-
alNet method of [11]. 2) Semi-supervised category: We compare to four popular
SSL methods, Π-Model [14], Temporal Ensemble [14], Mean Teacher [24] and
SimMatch [26]. For a fair comparison, MobileNetv3_2.5D [7] is used as the
backbone in other SSL methods.
Evaluation metrics: To evaluate the performance comprehensively, we com-
pute the area under the receiver operating characteristic curve (AUROC), speci-
ficity at a recall rate of 75% (S@R75), recall at a specificity rate of 75% (R@S75),
accuracy at a recall rate of 75% (A@R75), and accuracy at a specificity rate of
75% (A@S75).

3.2 Comparison with Baseline Methods

Table 1 outlines the quantitative results of all compared methods and the pro-
posed method. Regarding the supervised results, several observations can be
drawn. (1) 2.5D methods outperform 3D methods with an improvement of 2-3%
in AUROC. This shows that the 2.5D strategy equipped with the pre-trained
2D model weights results in markedly improved performance as compared to
direct 3D classification. This may be due to the fact that LNs normally contain
few slices in the z-axis, which is not sufficient to train the 3D convolutional ker-
nels. (2) The 3D DualNet yields significantly lower performance as compared to
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Table 1: Quantitative LN metastasis classification performance. Three groups
correspond to 3D supervised models, 2.5D supervised models, and semi-
supervised methods, respectively.

Method AUROC S@R75 R@S75 A@R75 A@S75

ResNet18_3D [5] 85.99 82.51 80.85 82.13 75.47
MobileViTv2_3D [18] 84.62 81.16 82.45 80.86 76.57
MobileNetv3_3D [7] 84.49 79.90 78.72 79.71 74.56
3D DualNet et al. [11] 86.48 82.96 81.91 82.54 74.89

ResNet18_2.5D [5] 87.94 84.28 84.04 83.87 74.94
MobileViTv2_2.5D [18] 87.34 85.14 83.51 84.61 76.60
MobileNetv3_2.5D [7] 87.88 84.26 83.51 83.78 75.41

Ours(Supervised) 90.68 88.26 88.30 87.58 77.04
(+2.74%) (+3.12%) (+4.26%) (+2.97%) (+0.44%)

Π-Model [14] 89.00 84.41 84.04 83.92 76.87
Temporal Ensemble [14] 89.31 83.33 82.45 82.93 74.94
Mean Teacher [24] 89.77 85.86 82.45 85.30 74.34
SimMatch [26] 90.23 86.56 87.77 86.01 75.91

Ours(Semi-supervised) 93.18 90.17 90.96 89.37 80.45
(+2.95%) (+3.61%) (+3.19%) (+3.36%) (+3.58%)

our supervised model, although DualNet also considers both context and size
information in LN classification. (3) Our supervised model improves the AU-
ROC, S@R75, and R@S75 to 90.68%, 88.26%, and 88.30%, respectively, which
are the highest among all supervised models and significantly (p=0.006<0.01)
outperforms the second-best supervised model (ResNet18_2.5D [5]) by 2.74%
in AUROC. This demonstrates the effectiveness of our two-stream multi-scale
feature fusion design.

When further incorporating semi-supervised training, we can observe that all
four comparing SSL methods improve the classification accuracy based on the
supervised baseline MobileNetv3_2.5D. Among them, SimMatch [26] achieves
the highest performance of 90.23% AUROC, 86.56%S@R75 and 87.77%R@S75.
These results show that incorporating the unlabeled LNs in SSL is generally
effective. Our final SSL model further significantly (p=0.007<0.01) boosts the
AUROC to 93.18% with 2.95% improvement over SimMatch [26]. Other evalu-
ation metrics show similar improvements.

3.3 Ablation Results

The effectiveness of each component in our method is demonstrated in ablation
Table 2. First, the 2.5D feature fusion significantly increases the performance
by 3.39% in AUROC. Based on the 2.5D setup, two-stream and multi-scale fu-
sion can increase the AUROC by 1.74% and 1.49%, respectively. This indicates
that both size and context information are helpful for LN metastasis classifica-
tion, and aggregated multi-scale features also provide supportive information.
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Table 2: Ablation studies of the effectiveness of the proposed 2.5D feature fusion,
two-stream network (TS), multi-scale fusion (MS), and pathology-guided label
sharpening loss (PGLS). MT refers to Mean Teacher mechanism [24].

2.5D TS MS MT PGLS AUROC S@R75 R@S75 A@R75 A@S75

84.49 79.90 78.72 79.71 74.56

✓ 87.88 84.26 83.51 83.78 75.41
✓ ✓ 89.61 87.36 87.77 86.76 75.91
✓ ✓ 89.37 83.96 85.64 83.56 75.03
✓ ✓ ✓ 90.68 88.26 88.30 87.58 77.04
✓ ✓ ✓ ✓ 91.92 89.86 89.89 89.15 77.37

✓ ✓ ✓ ✓ ✓ 93.18 90.17 90.96 89.37 80.45

Fig. 2: Ablation study of label sharpening threshold β and loss weight ω

Then, combining these two modules, our fully supervised model achieves 90.68%
in AUROC, boosting the performance by 2.80%. Finally, when conducting the
original mean teacher SSL [24], the AUROC and other metrics further increase
by ∼1%. In comparison, our proposed pathology-guided label sharpening loss
further boosts the AUROC to 93.18%, outperforming the mean teacher SSL by
1.26% and demonstrating its effectiveness.

We further conduct an ablation study to investigate the impact of the ma-
lignant label threshold β and the pathology-guided label sharpening loss weight
ω and results are shown in Fig .2. From left to right are AUROC and ACC
(accuracy at 75% specificity) results across different thresholds and loss weights.
Regarding the malignant label threshold β, it is observed that β=0.7 and 0.8 ex-
hibit higher performance. When β possesses a low value of 0.6, more noisy labels
may be included to reduce the performance. In contrast, when β is as high as
0.9, only a small portion of predictions become pseudo labels, which also hinders
the performance. We then fix the β=0.7 and evaluate ω ranging from 0.2 to 1.0.
We can see that ω=0.6 achieves the best performance. High ω might amplify the
adverse impact of false assigned LNs, while low ω have limited influence on the
model.

4 Conclusion

In this work, we introduce a specifically designed SSL method under limited
labeled LNs and large-scale unlabeled LNs with pathology reports. We prove that
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the SSL paradigm is effective for challenges in labeling LNs, and the proposed
pathology-guided label sharpening loss can further improve the performance
with prior knowledge. Besides, for a better initial model for SSL, we introduce a
two-stream 2.5D multi-scale feature fusion network. On a large-scale LN dataset,
by combining supervised pre-training and semi-supervised training, our method
achieves the top performance of 0.9318 AUROC, with about 3% improvement
compared to previous methods.
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