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Abstract. 3D reconstruction of biological tissues from a collection of
endoscopic images is a key to unlock various important downstream sur-
gical applications with 3D capabilities. Existing methods employ various
advanced neural rendering techniques for photorealistic view synthesis,
but they often struggle to recover accurate 3D representations when only
sparse observations are available, which is usually the case in real-world
clinical scenarios. To tackle this sparsity challenge, we propose a frame-
work leveraging the prior knowledge from multiple foundation models
during the reconstruction process, dubbed as EndoSparse. Experimental
results indicate that our proposed strategy significantly improves the geo-
metric and appearance quality under challenging sparse-view conditions,
including using only three views. In rigorous benchmarking experiments
against state-of-the-art methods, EndoSparse achieves superior results
in terms of accurate geometry, realistic appearance, and rendering effi-
ciency, confirming the robustness to sparse-view limitations in endoscopic
reconstruction. EndoSparse signifies a steady step towards the practical
deployment of neural 3D reconstruction in real-world clinical scenarios.
Project page: https://endo-sparse.github.io/.
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1 Introduction

Reconstructing 3D surgical scenes from endoscope videos [14] can create immer-
sive virtual surgical environments, benefiting robot-assisted surgery and aug-
mented/virtual reality surgical training [37] for medical professionals [30,37].
The ongoing development of real-time photorealistic reconstruction broadens
the scope of applications to include intraoperative usage, enabling surgeons to
navigate and precisely control surgical instruments while maintaining a com-
prehensive view of the surgical scene [22,12]. This advancement could further
minimize the need for invasive follow-up procedures.

Previous investigations into the 3D reconstruction of surgical scenes have
focused on depth estimation methodologies [4], the integration of point clouds
in a SLAM pipeline [28], and the design of spatial warping fields [23]. Recently,

⋆ Equal advising

https://endo-sparse.github.io/


2 Li et al.

advances in neural rendering, spearheaded by Neural Radiance Fields (NeRFs)
[24,2,9], kick-started the trend of representing the surgical 3D scene as a radi-
ance field [30,37,34]. Seminal papers, including EndoNeRF [30] and its follow-up
works [30,37,34], encapsulate deformable 3D scenes as a canonical neural ra-
diance field with a temporally varying deformable field. Although they achieve
convincing reconstruction of pliable tissues, these methods incur a heavy render-
ing cost since the NeRF approach requires querying such neural radiance fields
multiple times for a single pixel, limiting the applicable usage in intraoperative
applications [30,34].

As a promising alternative, the recently introduced 3D Gaussian Splatting
(3D-GS) [8] exhibits pleasing properties to overcome the inefficiency of NeRF-
based methods without sacrificing visual quality. Through using a collection
of 3D Gaussians as explicit representations with attributes of geometric shape
and color appearance and an efficient splatting-based rasterization, 3D-GS can
achieve real-time image rendering and such success has enabled endoscopic 3D
reconstruction in real-time from a dense collection of camera viewpoints by a
holistic framework using 3D-GS and a deformable modeling [22,10,21,40].

However, despite the enormous progress in applying state-of-the-art neural
3D reconstruction pipelines to endoscopic surgical scenes, a common assump-
tion for these methods is the access to a dense collection of training views.
However, this assumption is often unrealistic in clinical settings, as real-world
captures are often accompanied by equipment instability and variable noise and
lighting conditions, necessitating eliminating a significant number of low-quality
views [41,22,13]. As a result, the geometric and visual quality of existing neu-
ral rendering methods like 3D-GS would both significantly degrade with the
decreased available views [41]. To alleviate such performance deterioration in
clinical practice, this paper presents the first investigation into the medical
scene reconstruction under sparse-view settings.

Our insight is inspired by the impressive results delivered from Visual Foun-
dation Models (VFMs) [27,35] that using the prior knowledge extracted on large-
scale pre-training to facilitate learning for downstream tasks [38,36,19]. While
relevant efforts of using foundation models have been revealed effective for 2D
medical image segmentation [18,17,39,15], 3D volume segmentation [7,29,16,6],
and depth estimation [3,25], VFMs have yet to empower more computational
extensive medical tasks like 3D medical scene reconstruction. In this paper, we
introduce EndoSparse, a framework enabling efficient reconstruction and render-
ing of endoscopic scenes from sparse observations. EndoSparse enhances 3D-GS
scene reconstruction by distilling [11] geometric and appearance priors from pre-
trained foundation models. Specifically, the optimization of 3D-GS is designed
to obey the data distribution with large-scale pre-trained generative models.
Given the images produced by to-be-optimized 3D representations, we enforce
the rendered RGB images to maximize the score distilled from an image diffusion
model (Stable Diffusion [27]), and that the rendered depth maps to be consistent
with the prediction obtained via Depth-Anything [35]. Our framework signifi-
cantly improves the geometric and visual accuracy of the reconstructed 3D scene
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Fig. 1. EndoSparse Overview. Within a 3D-GS scene reconstruction framework, we
incorporate vision foundation models as effective regularizers of the 3D scene. We in-
corporate geometric prior knowledge from Depth-Anything [35] and image appearance
priors from Stable Diffusion [27], which provide valuable guidance signals for optimiza-
tion at viewpoints without camera coverage.

despite dealing with the challenging condition of only having access to spare ob-
servations (ranging from 3 to 12 views).

In short, our contributions are outlined as: (i) We present state-of-the-art
results on surgical scene reconstruction from a sparse set of endoscopic views,
achieving and significantly enhancing the practical usage potential of neural re-
construction methods. (ii) We demonstrate an effective strategy to instill prior
knowledge from a pre-trained 2D generative model to improve and regularize
the visual reconstruction quality under sparse observations. (iii) We introduce
an effective strategy to distill geometric prior knowledge from a visual founda-
tion model that drastically improves the geometric reconstruction quality under
sparse observations.

2 Method

As shown in Fig. 1, EndoSparse aims to perform accurate and efficient endoscopic
scene reconstruction with a collection of sparse observations. The Gaussians are
each initialized with attributes related with color, position, and shape (Sec. 2.1).
To bolster the appearance quality for the representation constructed on insuf-
ficient perspectives, a diffusion prior is leveraged to effectively regularize the
synthesized results to be plausible (Sec. 2.2). To further facilitate accurate ge-
ometry, we exploit priors distilled from a foundation model with depth estimation
abilities (Sec. 2.3). Overall, the proposed EndoSparse is robust against degraded
reconstruction quality due to only having sparse observations (Sec. 2.4).

2.1 Deformable Endoscopic Reconstruction with 3D-GS

3D Gaussian Splatting. 3D Gaussian Splatting (3D-GS) [8] provides an ex-
plicit representation of a 3D scene, utilizing an array of 3D Gaussians, each
endowed with specific attributes: a positional vector µ ∈ R3 and a covariance
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matrix Σ ∈ R3×3, which can be further deconstructed into a scaling factor
s ∈ R3 and a rotation quaternion r ∈ R4, both of which cater to the require-
ments of differentiable optimization. Additionally, the opacity logit o ∈ R and
Spherical Harmonic (SH) coefficients c ∈ Rk (where k represents numbers of SH
functions) can be utilized to represent colors and view-dependent appearances
respectively

G(x) =
1

(2π)
3/2 |Σ|1/2

e−
1
2 (x−µ)TΣ−1(x−µ). (1)

Accordingly, 3D-GS arranges all the Gaussians contributing to a pixel in a spe-
cific order, and subsequently blends the ordered Gaussians overlapping the pixels
utilizing: Ĉ =

∑n
i=1 ciαi

∏i−1
j=1(1− αj), where ci, αi denotes the color and den-

sity computed by a Gaussian G with covariance Σ, which is then multiplied by
an optimizable SH color coefficients and opacity that are unique to each point.
Deformable Scene Reconstruction. Building upon 3D-GS, [31] introduces
a deformation module that incorporates a 4D encoding voxel Fν and a com-
pact MLP Fθ to learn a deformation field of Gaussians, thereby facilitating
the effective modeling the dynamical components in a scene. Specially, given
a 4D input including the Gaussian center µ and query time τ , the 4D encod-
ing voxel Fν retrieves the latent feature of inputs, Fν(µ, τ). Then, the MLP
Fθ computes the time-varying deformation in position, rotation, and scaling as
{∆µ, ∆r, ∆s} = Fθ ◦ Fν(µ, τ). Consequently, the representation of Gaussians
could be depicted as a dynamic fashion: {µ+∆µ, r +∆r, s+∆s,o, c}.

Despite the fact that the introduced pipeline can achieve satisfactory ren-
dering quality when there is an abundance of training views, its performance
significantly declines as the number of available viewpoints decreases. In what
follows, we propose the strategies to leverage the priors from foundational mod-
els to recuperate the compromised performance under the sparsity challenge.

2.2 Instilling Diffusion Prior for Plausible Appearance

In essence, during training, we introduce random noise to the rendered image
from the novel viewpoints, and let the diffusion model predict the original image
without noise, and we use that predicted clean image as the pseudo-ground-truth
view to derive loss for our current scene representation. As the diffusion model
is trained on a huge amount of visual content, it inherently possesses a general
image prior and is capable of providing plausible guidance gradients even for
regions with missing details [33].

Specifically, random noise is gradually added at levels t ∈ {1, . . . , T} to the
rendered images Ĉ to obtain noisy samples C̃t as

C̃t =
√
ᾱtĈ+

√
1− ᾱtϵ (2)

where ϵ ∼ N (0, I), ᾱt :=
∏t

s=1 1− βs, and {β1, . . . , βT } is the variance schedule
of a process with T steps. In the reverse denoising diffusion process, the condi-
tional denoising model ϵϕ(·) parameterized with learned parameters ϕ gradually

removes noise from C̃t to obtain C̃t−1. The guidance signals can be obtained
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by noising Ĉ with sampled noise ϵ at a random timestep t, computing the noise

estimate ϵ̂ = ϵϕ

(
Ĉt, C̃, t

)
and minimizing the following quantity of Score Dis-

tillation Sampling (SDS) as introduced in [26]:

SDS(Ĉ, C̃) = EĈ,ϵ∼N (0,I),t∼U(T )∥ϵ− ϵϕ

(
Ĉt, C̃, t

)
∥22. (3)

2.3 Distilling Geometric Prior for Accurate Geometry

Under conditions of sparse training views, the scarcity of observational data
inhibits the ability to coherently learn geometry, subsequently heightening the
propensity for overfitting on training views and yielding less than desirable ex-
trapolation to novel views.
Geometry Coherence in Monocular Depth. Using the foundational depth
estimation model, DepthAnything [35], which is trained using a substantial
dataset comprising 1.5 million paired image-depth observations and 62 million
unlabeled images, we can generate monocular depth maps for all rendered im-
ages. To reconcile the scale ambiguity inherent between the actual scene scale and
the estimated monocular depth, we employ a relaxed relative loss, i.e., Pearson
correlation, to measure the distributional similarity between the rendered depth
maps D̂ and the estimated ones D̃:

Corr(D̂, D̃) =
Cov(D̂, D̃)√
Var(D̂)Var(D̃)

(4)

This soft constraint allows for the alignment [41,20] of depth structure without
being hindered by the inconsistencies in absolute depth values.
Differentiable Depth Rasterization. To facilitate the backpropagation from
the depth prior to guide the training of the Gaussian, we employ a differentiable
depth rasterizer. This allows for the comparison and evaluation of the discrep-
ancy between the rendered depth D̂ and the estimated depth D̃ by DepthAny-
thing. Specifically, we leverage the alpha-blending rendering technique used in
3D-GS for depth rasterization, where the z-buffer from the sequentially arranged
Gaussians contributing to a pixel is accumulated to generate the depth value:

D̂ =

n∑
i=1

diαi

i−1∏
j=1

(1− αj) (5)

where di signifies the z-buffer corresponding to the i-th Gaussians. The incorpo-
ration of a fully differentiable implementation facilitates the depth correlation
loss, thereby enhancing the congruence between rendered and estimated depths.

2.4 Overall Optimization

The overall training objective can be derived by combining all the above terms.
Meanwhile, reconstructing from videos wherein tool occlusion is present poses
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a significant challenge. In line with previous studies [30,34], we utilize labeled
tool occlusion masks M (where 1 denotes tool pixels and 0 for tissue pixels) to
denote the unseen pixels in the final training loss function:

L = λ1 ∥M ⊙ (Ĉ−C)∥1︸ ︷︷ ︸
LRGB

+λ2 ∥M ⊙ SDS(Ĉ, C̃)∥1︸ ︷︷ ︸
LDiff

+λ3 ∥M ⊙ (1− Corr(D̂, D̃))∥1︸ ︷︷ ︸
LGeo

(6)
where M = 1−M is applied since the loss functions is merely calculated on the
tissue pixels. Note that the geometrical loss LGeo is implemented by applying
1 - Pearson similarity (Corr in Eq. 4). λ1, λ2, λ3 is the trade-off coefficients.
Finally, the parameters of Gaussians PG = {µ, r, s,o, c}, MLP θ and encoding
fields ν is updated jointly with the gradients ∇PG,θ,ν L, with regard to the total
objective in Eq. 6.

3 Experiments

3.1 Experiment Settings

Datasets and Evaluation. Empirical evaluations are conducted on two public
repositories, specifically, EndoNeRF-D [30] and SCARED [1]. EndoNeRF-D [30]
incorporates two instances of in-vivo prostatectomy data, collected from stereo
cameras positioned at a singular vantage point. This dataset encapsulates intri-
cate scenarios hallmarked by non-rigid deformation and instrument occlusion.
The SCARED compilation [1] comprises RGBD visuals of five porcine cadaver
abdominal anatomical structures, procured using a DaVinci endoscope and a
projector. The efficacy of our methodology is assessed utilizing inference speed,
quantified as frames per second (FPS), geometrical quality in terms of total vari-
ations (TV) and SSIM of depth maps, and the standard visual quality metrics
for rendered images as PSNR, SSIM, and LPIPS.
Implementation Details. Following [31,22], we adopt a two-stage training
methodology in to model the static and deformation fields. In the first stage,
we train the 3D-GS model only for static modeling while in the second stage,
we train the 3D-GS with the deformable field jointly. We set the coefficients of
photometric loss term, diffusion prior and geometry prior, i.e., λ1, λ2, λ3, as 1,
0.001, 0.01 respectively by grid search. we utilize an Adam optimizer with an
inaugural learning rate of 1.6 × 10−3. Following [31,22,32], we adopt a warm-
up strategy, which initially optimize Canonical Gaussians without involving de-
formation fields for 1k iterations, and then train the whole framework for an
additional 3k iterations. All experiments are executed on a RTX 4090 GPU.

3.2 Comparison with State-of-the-arts

EndoSparse is evaluated in comparison to the existing state-of-the-art recon-
struction methods, namely, EndoNeRF [30], EndoSurf [37], LerPlane [34], En-
doGS [5] and EndoGaussian [22]. As shown in Tab. 1, EndoSparse excels over the
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Table 1. Quantitative comparisons on two datasets, with three training views.

Dataset Method

Efficiency Geometrical Quality Visual Quality

FPS ↑ TV ↓ δ1 ↑ SSIM ↑ PSNR ↑ SSIM ↑ LPIPS ↓

En
do
N
eR
F-
D

EndoNeRF [30] 0.06 96.06 0.920 0.851 25.01 0.762 0.246
EndoSurf [37] 0.05 91.56 0.931 0.858 25.34 0.783 0.225
LerPlane-9K [34] 0.96 93.20 0.913 0.849 23.93 0.755 0.249
LerPlane-32K [34] 0.91 83.63 0.957 0.856 25.83 0.789 0.201
EndoGS [5] 112.5 90.64 0.942 0.863 24.83 0.774 0.241
EndoGaussian [22] 186.4 92.58 0.938 0.859 25.37 0.792 0.222
EndoSparse (Ours) 195.2 74.61 0.976 0.899 26.55 0.826 0.193

SC
A
R
ED

EndoNeRF [30] 0.03 130.2 0.748 0.256 18.73 0.675 0.356
EndoSurf [37] 0.02 121.1 0.782 0.290 19.64 0.693 0.318
EndoGaussian [22] 179.5 116.4 0.765 0.273 19.40 0.681 0.331
EndoSparse (Ours) 183.1 105.7 0.806 0.309 20.95 0.718 0.294

state-of-the-art methods based on the NeRF representation [30,37,34] for endo-
scopic scene reconstruction in terms of rendering efficiency, geometric precision
and visual quality. Furthermore, EndoSparse surpasses EndoGS and EndoGaus-
sian in all aspects, indicating that our method effectively recovers a accurate
representation of scenes from sparse views thanks to our designed strategy to
incorporate priors from vision foundation models. Fig. 2 further showcases the
qualitative results of our method and prior state-of-the-arts. Compared with
other techniques, the rendered images (in 1st Row) by our proposed EndoSparse
preserves greater details and proffers superior visual renditions of the deformable
tissues. Besides, we provide the visualization of rendered depth maps (normal-
ized and applied colormap) and we can see that our method demonstrates better
geometrical precision compared to the reference ones.

3.3 Ablation Studies

Efficacy of Key Components. Figure 3(a) presents a detailed depiction of the
ablations, focusing on the key components of the proposed EndoSparse model,
specifically the diffusion prior and the geometry prior. It is noteworthy that
when these two aforementioned priors are applied in their respective capacities,
the performance of the model experiences a noticeable uptick. This enhancement
not only validates the overall effectiveness of our designs but also underscores
the capability and promising potential of vision foundational models. Our ab-
lation study results confirm their pivotal roles in the overall performance and
effectiveness of the model under the challenging condition of sparse observations.
Ablations on Quantity of Training Views. As shown in Figure 3(b), we
perform a series of ablations studies on the number of training views, ranging
from a minimum of 3 views to a maximum of 12 views. As expected, we can see
a consistent trend showing that an increase in the number of views correlates
with an improvement in the visual and geometrical quality of the output. In
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Fig. 3. Ablation analysis on EndoNeRF-D and SCARED datasets, with the results in
terms of geometrical quality (top) and visual quality (bottom).

addition, it is important to note that our proposed EndoSparse consistently
outperforms the baseline across all settings. This suggests that EndoSparse is
not only capable of generalizing to a larger number of views, but also able to
deliver superior performance in terms of quality and accuracy.
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4 Conclusion

This paper introduces an efficient and robust framework 3D reconstruction of
endoscopic scenes, achieving real-time and photorealistic reconstruction using
sparse observations. Specifically, we utilize vision foundation models as effective
regularizers for the optimization of 3D representation. We incorporate geomet-
ric prior knowledge from Depth-Anything [35] and image appearance priors from
Stable Diffusion [27]. Collectively, EndoSparse delivers superior results in terms
of accuracy, rendering efficiency, and sparse-view robustness in the reconstruc-
tion of endoscopic scenes. With EndoSparse, we make steady strides towards the
real-world deployment of neural 3D reconstruction in practical clinical scenarios.
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