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Abstract. Although single-task medical image restoration (MedIR) has
witnessed remarkable success, the limited generalizability of these meth-
ods poses a substantial obstacle to wider application. In this paper, we fo-
cus on the task of all-in-one medical image restoration, aiming to address
multiple distinct MedIR tasks with a single universal model. Nonetheless,
due to significant differences between different MedIR tasks, training a
universal model often encounters task interference issues, where differ-
ent tasks with shared parameters may conflict with each other in the
gradient update direction. This task interference leads to deviation of
the model update direction from the optimal path, thereby affecting the
model’s performance. To tackle this issue, we propose a task-adaptive
routing strategy, allowing conflicting tasks to select different network
paths in spatial and channel dimensions, thereby mitigating task inter-
ference. Experimental results demonstrate that our proposed All-in-one
Medical Image Restoration (AMIR) network achieves state-of-the-art
performance in three MedIR tasks: MRI super-resolution, CT denoising,
and PET synthesis, both in single-task and all-in-one settings. The code
and data will be available at https://github.com/Yaziwel/AMIR.
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1 Introduction

Medical image restoration (MedIR) refers to the process of transforming low-
quality (LQ) medical images into high-quality (HQ) images. MedIR has achieved
remarkable success in individual tasks such as MRI super-resolution [1,2], CT
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denoising [3,4,5,6], and PET synthesis [7,8,9,10,11,12]. Within the scope of single-
task MedIR, there are also studies addressing input degradation variations, such
as varying noise levels [8], imaging protocols [12], and centers [12]. The well-
defined settings of these MedIR tasks allow researchers to design specific models
tailored to the unique characteristics of each individual task.

However, these single-task models designed for particular MedIR tasks often
encounter significant performance drops when applied to other MedIR tasks. In
complex application scenarios such as multimodal imaging (e.g., PET/CT and
PET/MRI), multiple MedIR tasks coexist simultaneously. Single-task models
struggle to address the differences between modalities and tasks, and utilizing
separate models for each task may result in inefficiencies in both usage and main-
tenance. Apart from practical limitations, single-task models remain inherently
constrained by their task-specific nature, hindering the evolution from speci-
ficity to a more generalized intelligence in the field of medical image restoration.
Therefore, there is a pressing need to develop a single universal model capable
of simultaneously handling multiple MedIR tasks.

Recently, all-in-one image restoration [13,14,15,16] (also known as multi-task
image restoration) has gained prominence in natural images, attempting to ad-
dress multiple different restoration tasks using a single universal model. It holds
the potential to address multiple MedIR tasks with a single universal model.
However, given the substantial disparities between medical and natural image
restoration tasks, it is not advisable to directly apply all-in-one natural image
restoration methods to MedIR tasks. In natural image restoration, task distinc-
tions primarily arise from varied input image degradations, with their ground
truths presumed to follow a uniform data distribution. However, in MedIR,
alongside input degradation disparities, the ground truths of different MedIR
tasks also showcase significantly varied data distributions due to modality dif-
ferences (as shown in Fig. I (a) in the supplement). These significant differences
between MedIR tasks can result in task interference, a common issue in multi-
task learning [17,18], where the gradient update directions between tasks are
inconsistent or even opposite. As shown in Fig. I (b) in the supplement, we
quantify the task interference metric [18] among different MedIR tasks and ob-
serve significant task interference. This task interference issue will lead to an
uncertain update direction that deviates from the optimal, resulting in subop-
timal performance. While essential for handling multiple MedIR tasks, the task
interference issue is rarely explicitly addressed by current all-in-one methods.

In this paper, we introduce an innovative All-in-one Medical Image Restora-
tion (AMIR) network capable of handling multiple MedIR tasks with a single uni-
versal model. The key idea behind AMIR is the incorporation of a task-adaptive
routing strategy, which dynamically directs inputs from conflicting tasks to dif-
ferent network paths, explicitly mitigating interference between tasks. Specifi-
cally, the proposed task-adaptive routing involves routing instruction learning,
spatial routing, and channel routing. Routing instruction learning aims to adap-
tively learn task-relevant instructions based on input images, while spatial rout-
ing and channel routing utilize these learned instructions to guide the routing
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Fig. 1. Overview of the proposed all-in-one medical image restoration (AMIR) network.

of network features at spatial and channel levels, respectively, thereby alleviat-
ing potential interference. Extensive experiments demonstrate that our proposed
AMIR achieves state-of-the-art performance in three MedIR tasks: MRI super-
resolution, CT denoising, and PET synthesis, both in single-task and all-in-one
settings. Our contribution can be three-fold:

— We propose a novel All-in-one Medical Image Restoration (AMIR) network,
which allows handling multiple different MedIR tasks with a single unified
model. To the best of our knowledge, AMIR could be one of the first methods
to handle multiple MedIR tasks in an all-in-one fashion.

— We propose a novel task-adaptive routing strategy to mitigate interference
between different tasks. It is achieved by assigning conflicting tasks to dif-
ferent network paths.

— Extensive experiments show that our proposed AMIR achieves state-of-the-
art performance in both single-task MedIR and all-in-one MedIR, tasks.

2 Method

2.1 Network Architecture

The architecture of the proposed All-In-One Medical Image Restoration (AMIR)
network is shown in Fig. 1 (a). AMIR adopts Restormer [2], a Unet-style net-
work, as the baseline model for medical image restoration. The key difference lies
in AMIR’s inclusion of a Routing Instruction Network (RIN) alongside Spatial
Routing Modules (SRMs; as shown in Fig. 1 (b)) and Channel Routing Modules
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(CRMs; as shown in Fig. 1 (c)) for network path routing. Specifically, given an
input LQ medical image I*Q € RT*Wx1 AMIR first extracts shallow features
ISF ¢ REXWXC v applying a 3x3 convolution, where H, W, and C denote the
height, width, and channel, respectively. Subsequently, I°F undergoes a hierar-
chical encoder-bottleneck-decoder structure to be transformed into deep features
IPF | with multiple Restormer Transformer blocks [2] utilized at each level for
feature extraction. To mitigate task interference, AMIR employs a task-adaptive
routing strategy, incorporating SRMs before each encoder level and CRMs before
the bottleneck and each decoder level. SRMs and CRMs adaptively select prop-
agation paths for different task features based on the task-relevant instructions
from RIN, thus reducing potential interference. Finally, a 3x3 convolution layer
is applied to deep features I”F to generate residual image I € REXWX1 which
is added to the input LQ image to obtain the restored image JHQ — JLQ 4 JR
Next, we will describe the task-adaptive routing strategy and its key components.

2.2 Task-Adaptive Routing

To address potential interference caused by multiple tasks sharing the same pa-
rameters but with different optimization directions, we propose a task-adaptive
routing strategy. This strategy enables different tasks to select distinct paths
for customized processing, thereby avoiding interference between tasks. We will
introduce the task-adaptive routing strategy from three aspects: routing instruc-
tion learning, spatial routing, and channel routing.

Routing Instruction Learning. Instructions are representations relevant
to the task, crucial for helping the network better understand the current task
and adjust the direction of restoration. Previous all-in-one natural image restora-
tion methods often utilize representations from contrastive learning [19,13] as
instructions. However, the task of contrastive learning exhibits significant dif-
ferences from image restoration tasks, making it challenging to balance their
relationship and potentially introducing undesirable task interference. To ad-
dress this, we propose a Routing Instruction Network (RIN; as shown in Fig. 1
(a)), which can adaptively generate task-relevant instructions from the input
image without the need for additional supervision. The mechanism of the RIN
can be formulated as follows:

N
" =3"q;D;, a; = Softmax (GAP (E(I))), (1)
i=1
where E(+) is a five-layer CNN encoder, while GAP(-) denotes the global average
pooling layer. D = [Dy, Da, ..., Dy] constitutes an instruction dictionary, where
the N instructions D; € R?%6 in the dictionary are learnable parameters. Dur-
ing this process, RIN dynamically predicts weights a; from the input image I
and applies them to the instruction dictionary D to generate input-conditioned
instruction I'F. This process does not require any supervision, yet we demon-
strate in Fig. III (a) in the supplement that the learned instructions I'f are
task-relevant.
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Spatial Routing. Task interference arises when different tasks share net-
work parameters but have different update directions. A fundamental solution
is to assign conflicting tasks to separate parameters. Mixture-of-Experts (MoE)
[20] provides a potential solution, which learns to dynamically route inputs to
different expert networks. However, vanilla MoE selects the experts solely re-
lying on input token representation, neglecting crucial global and task-relevant
information. Hence, we propose to enhance the routing strategy of the vanilla
MoE by incorporating the learned global task-relevant instruction I'7. Given a
local spatial token z; € RY of the input feature X € RH/XW/XC/, along with
the global instruction I'? and an expert bank E = [Eq, Eg, ..., Ejs] comprising
M expert networks, our spatial routing module (SRM; as shown in Fig. 1 (b))
can be formulated as:

G(z;, I'™) = Top-K(Softmax (FC ([z;, FC(I')]))), (2)
M

wj = Glai, I'M) Be (1), (3)
e=1

where FC(+) indicates the fully connected layer. Top-K(-) operator sets all values
to be zero except the largest K values. G(-) denotes the routing function that
produces a sparse weight for different experts. E. refers to the e-th expert in
the expert bank, with each being a multi-layer perception (MLP). G(xz;, I'%),
determines how much the e-th expert contributes to the output. In this process,
SRM routes each spatial token from the input feature X to the corresponding
top-K selected experts for separate processing with the guidance of the global
instruction I'%, and then combines each expert’s knowledge through weighted
summation. Notably, very dissimilar tokens will be routed to distinct experts,
thereby avoiding potential interference. We integrate SRM before each encoder
level in the UNet to mitigate task interference during the encoding process.
Channel Routing. Although SRM can effectively mitigate task interfer-
ence and obtain strong interpretability, it suffers from two drawbacks. Firstly,
routing different spatial tokens to different experts disrupts the feature spatial
continuity. Secondly, SRM introduces multiple expert networks, leading to a lin-
ear increase in parameters with the growth of expert networks. To address these
issues, we propose a more efficient Channel Routing Module (CRM; as shown in
Fig. 1 (c)). With the guidance of task instruction I'%#, CRM dynamically routes
data from different tasks to different channels without introducing excessive ad-
ditional parameters, while also preserving feature spatial continuity. Given an
input feature X € RE XW'*C" the mechanism of CRM can be described as:

X' = (X ®m), m = Sigmoid(FC(I'®)), (4)

where m € RY is a channel-wise (soft-)binary mask estimated from the in-
struction I7%. In this process, CRM conducts channel-wise task routing through
feature masking depending on the task instruction. We incorporate the CRM
before the bottleneck and each decoder level of the UNet to address task inter-
ference in the decoding process.
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2.3 Loss Function

The overall loss can be summarized as follows:
L=1L;+ ’YLBalancea (5)

where L, depicts the difference between the restored THQ and the HQ image
THQ . Lgaiance [20] is a regularization term in MoE that prevents static routing
where the same few experts are always selected. v is a weighting parameter.

3 Experiments and Results

3.1 Dataset

Our all-in-one medical image restoration experiment encompasses three tasks:
MRI super-resolution, CT denoising, and PET Synthesis. In the subsequent sec-
tion, we introduce the corresponding datasets for each task.

MRI Super-Resolution. We use the publicly available IXI MRI dataset !,
which comprises 578 HQ T2 weighted MRI images. Each 3D MRI volume is sized
at 256x256xn, from which we extract the central 100 2D slices sized 256 x 256
to exclude side slices. The LQ image is obtained by cropping the k-space with
a downsampling factor of 4x (retaining the central 6.25% data points). The
dataset is divided into 405 for training, 59 for validation, and 114 for testing.

CT Denoising. We employ the dataset from the 2016 NIH AAPM-Mayo
Clinic Low-Dose CT Grand Challenge [21], which comprises paired standard-
dose HQ CT images and quarter-dose LQ CT images, each with an image size of
512x512. These images originate from 10 patients, with 8 allocated for training,
1 for validation, and 1 for testing purposes.

PET Synthesis. We acquire 159 HQ PET images using the PolarStar m660
PET/CT system in list mode, with an injection dose of 293MBq *F-FDG.
LQ PET images are generated through random list mode decimation with a
dose reduction factor of 12. Both HQ and LQ PET images are reconstructed
using the standard OSEM method [22]. Each PET image has 3D shapes of
192x192x400, with a voxel size of 3.15mmx3.15mmx1.87mm, and is divided
into 192 2D slices sized 192x400. Slices containing only air are excluded. Patient
data are partitioned into 120 for training, 10 for validation, and 29 for testing.

3.2 Implementation

In our AMIR architecture, as shown in Fig. 1, the number of Transformer blocks
is configured as follows: Ly =5, Lo = Lg =7, Ly = 9, and Ly¢finement = 4. The
input channel number is specified as C' = 42, and the length of the instruction
dictionary is set to N = 16. Within the SRM component, we designate the
expert number as M = 4 and the selected number of experts as K = 2. During

! https://brain-development.org/ixi-dataset,/
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Table 1. All-in-one medical image restoration results. The best results are bolded,
and the second-best results are underlined.

Method MRI Super-Resolution CT Denoising PET Synthesis Average
PSNR7T SSIMT RMSE| | PSNRT SSIM1T RMSE|| PSNRT SSIM{T RMSE|| PSNRT SSIMT RMSE|
Restormer [2] 31.7177 0.9362 30.0549 | 33.6142 0.9177 8.5329 | 37.1368 0.9473 0.0872 | 34.1562 0.9337 12.8917
Eformer [5] 29.1922 0.8728 39.0983 | 32.4438 0.9078 9.7565 | 35.1096 0.9091 0.1085 | 32.2485 0.8966 16.3211
Spach Transformer [10]| 31.1799 0.9290 31.8342 |33.4740 0.9155 8.6677 | 37.0547 0.9445 0.0874 | 33.9029 0.9297 13.5298
DRMC [12] 29.5466 0.9032 38.1691 | 33.2770 0.9153 8.8674 | 36.1909 0.9376 0.0960 | 33.0048 0.9187 15.7108
AirNet [13] 31.3921 0.9316 31.1141|33.6222 0.9176 8.5226 [37.1721 0.9451 0.0864|34.0621 0.9314 13.2410
AMIR 32.0262 0.9396 29.0988|33.7011 0.9182 8.4520| 37.1193 0.9475 0.0876 |34.2822 0.9351 12.5461

training, we utilize patches sized at 128 x 128 with a batch size of 8. Our model
undergoes training via the Adam optimizer for 2 x 10° iterations, starting with
an initial learning rate of 2 x 10~4, gradually decreasing to 1 x 10~% using cosine
annealing. All experiments are conducted in PyTorch, utilizing NVIDIA A100
with 40GB memory.

3.3 Comparative Experiment

To validate our proposed AMIR, we conduct evaluations on three tasks: MRI
super-resolution, CT denoising, and PET synthesis. Baselines for MRI super-
resolution include SRCNN [23], VDSR [24], SwinIR [25], and Restormer [2]; for
CT denoising, CNN [3], REDCNN [4], Eformer [5], and CTformer [6]; and for
PET synthesis, Xiang’s method [7], DCNN [8], ARGAN [9], and Spach Trans-
former [10]. We conduct experiments under two settings: single-task and all-in-
one. In the single-task setting, we train different models for each MedIR task
and compare them with their respective baselines. In the all-in-one setting, we
train a universal model to address all tasks simultaneously. We retrain the best-
performing baseline models from each task into the all-in-one setting for com-
parison. Additionally, we utilize two universal models for comparison: DRMC
[12], initially developed for multi-center PET synthesis, and AirNet [13], origi-
nally designed for all-in-one natural image restoration. PSNR, SSIM, and RMSE
scores are calculated to assess the restoration performance.

Single-Task Medical Image Restoration. The results of single-task MedIR,
are showcased in Table. I in the supplement, revealing that our proposed AMIR
surpasses the best-performing baseline models — Restormer [2], Eformer [5], and
Spach Transformer [10] — in MRI super-resolution, CT denoising, and PET syn-
thesis tasks, respectively. Despite not being specifically designed for single-task
MedIR, AMIR’s outstanding performance suggests that the proposed routing
strategy is also helpful for handling the sample differences within a single task.

All-In-One Medical Image Restoration. The results of all-in-one MedIR
are presented in Table. 1, where AMIR demonstrates state-of-the-art perfor-
mance when averaged across the three tasks. Specifically, in MRI super-resolution
and CT denoising, AMIR outperforms all comparative methods in terms of
PSNR, SSIM, and RMSE metrics. In PET synthesis, although AMIR’s PSNR
and RMSE metrics are lower than AirNet [13], it achieves the best result in SSIM.
Visual comparisons in Fig. II in the supplement demonstrate that AMIR bet-
ter restores image structure and details across all three tasks. The superiority of
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Table 2. Ablation study on the combinations of training tasks. ”v"” denotes AMIR
training with the task and ”—” indicates unavailable results.

Training Task Testing Task
. \ P . | MRI Super-Resolution CT Denoising PET Synthesis
MRI Super-Resolution CT Denoising PET Synthesis PSNRT SSIMT RMSE] | PSNRT SSIMT RMSE]| PSNR] SSIMT RMSE]
v 31.9923 0.9393 29.2095
v - - - 33.6738 0.9183 8.4773 - - -
v - - - - - - |37.2121 0.9473 0.0863
v v 32.0683 0.9404 29.0296| 33.6934 0.9183 8.4592 - - -
v v 32.0404 0.9399 29.0864 - - - 37.1054 0.9473 0.0875
v v - - - 33.7537 0.9189 8.4027| 37.0738 0.9473 0.0880
v v v 32.0262 0.9396 29.0988 | 33.7011 0.9182 8.4520 | 37.1193 0.9475 0.0876

Table 3. Ablation study on the task-adaptive routing strategy.

MRI Super-Resolution CT Denoising PET Synthesis

Method Params 5o RT SSIMT RMSE]| PSNR] SSIMT RMSE]| PSNRT SSIMT RMSE]

Restormer [2] (Baseline) 26.12 M| 31,7177 0.9362 30.0549 | 33.6142 0.9177 8.5320 | 37.1368 0.0473 0.0872

Istenction w/o D 23.53 M| 31,9088 0.9382 29.4575 | 33.6800 0.9181 8.4712 | 37.1233 0.9474 0.0876
w/o D and w/ Contrastive Learning [19][23.53 M| 31.9545 0.9388 290.3359 | 33.5987 0.9161 8.5495 | 37.1388 0.9465 0.0872

Fouting Module w/o SRM 22.74 M| 31.8678 0.9379 20.5851 | 33.6556 0.0171 8.4942 [37.1639 0.9470 0.0871
w/o CRM 23.37 M| 31,9802 0.9391 20.2251 | 33.6814 09181 8.4712 | 37.1443 0.9476 0.0874

AMIR 23.51 M[32.0262 0.9396 29.0988|33.7011 0.9182 8.4520 37.1193 09475 0.0876

AMIR over other methods lies in its ability to mitigate task interference more
effectively, thereby preserving the specificity of each task.

3.4 Ablation Study

We conduct ablation studies on different training task combinations to analyze
their impact on AMIR outcomes. Also, we study the task-adaptive routing strat-
egy through ablation studies to understand the specific roles of its components.
Ablation Study on Task Combinations. We train AMIR on various task
combinations and list the results in Table. 2. It is surprising that, despite the
increase in the number of tasks, AMIR maintains its performance without signif-
icant degradation. This can be attributed to the proposed task-adaptive routing
strategy, which enables multiple tasks to share a universal model with minimal
interference. Furthermore, Table. 2 reveals that certain task combinations yield
better results than single-task models. This is because universal models benefit
from more training data and task synergy compared to single-task models.
Ablation Study on the Task-Adaptive Routing Strategy. We conduct
ablations on instruction learning and routing modules to analyze the compo-
nents of the task-adaptive routing strategy. For instruction learning, we remove
the dictionary D and adopt contrastive learning [19], similar to AirNet [13],
for guidance. Table. 3 demonstrates the superior effectiveness of adaptive in-
struction learning. The instruction representation I'% is visualized in Fig. III
(a) in the supplement using t-SNE, revealing discriminations between tasks,
thus demonstrating its relevance to tasks. Regarding the routing modules SRM
and CRM, we assess their effectiveness by removing them individually. Table. 2
indicates that both of them effectively enhance the model’s performance. Addi-
tionally, it is shown in Fig. IIT (b) in the supplement that different tasks select
distinct expert networks within SRM, confirming its interpretability. Thanks to
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the well-designed task-adaptive routing strategy, our proposed AMIR. achieves
better results than the baseline model Restormer [2] even with fewer parameters
(although introducing additional parameters, AMIR utilizes fewer channels).

4 Conclusion

In this paper, we propose an all-in-one medical image restoration (AMIR) net-
work capable of handling multiple MedIR tasks with a single universal model.
To mitigate task interference, we introduce a task-adaptive routing strategy
that dynamically routes different tasks to distinct network paths. Experiments
demonstrate that the proposed AMIR achieves state-of-the-art performance in
both single-task MedIR and all-in-one MedIR tasks. In the future, we will explore
the effectiveness of the proposed AMIR as more MedIR tasks are involved.
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