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Abstract. In clinical examinations and diagnoses, low-dose computed
tomography (LDCT) is crucial for minimizing health risks compared
with normal-dose computed tomography (NDCT). However, reducing
the radiation dose compromises the signal-to-noise ratio, leading to de-
graded quality of CT images. To address this, we analyze LDCT denois-
ing task based on experimental results from the frequency perspective,
and then introduce a novel self-supervised CT image denoising method
called WIA-LD2ND, only using NDCT data. The proposed WIA-LD2ND
comprises two modules: Wavelet-based Image Alignment (WIA) and
Frequency-Aware Multi-scale Loss (FAM). First, WIA is introduced to
align NDCT with LDCT by mainly adding noise to the high-frequency
components, which is the main difference between LDCT and NDCT.
Second, to better capture high-frequency components and detailed infor-
mation, Frequency-Aware Multi-scale Loss (FAM) is proposed by effec-
tively utilizing multi-scale feature space. Extensive experiments on two
public LDCT denoising datasets demonstrate that our WIA-LD2ND,
only uses NDCT, outperforms existing several state-of-the-art weakly-
supervised and self-supervised methods. Source code is available at https:
//github.com/zhaohaoyu376/WI-LD2ND.

Keywords: Low-dose computed tomography · self-supervised learning
· image denoising.

1 Introduction

Computed tomography (CT) has become a widely utilized tool in medical di-
agnosis. However, increased usage has raised concerns regarding potential risks
associated with excessive radiation exposure [11]. The widely recognized prin-
ciple of ALARA (as low as reasonably achievable) [25] is extensively embraced
to minimize exposure through strategies such as employing sparse sampling and
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reducing tube flux. Reducing the X-ray radiation dose, however, leads to poor-
quality images with noticeable noise, which poses challenges for accurate diag-
nosis [4]. Therefore, the development of image denoising techniques [31] that can
effectively handle CT modalities emerges as a critical and urgent need in clinical
practice, to ensure both patient safety and diagnostic precision.

In recent years, advanced deep learning networks have proven to be highly
effective in reducing noise in low-dose computed tomography (LDCT) than tra-
ditional denoising methods [3,7]. Supervised denoising methods [16,15], such as
CTformer [27] and ASCON [2], learn the end-to-end mapping from low-dose
to normal-dose CT images. Generative adversarial networks (GANs) are also
utilized in LDCT denoising task, which do not need paired data, but lots of
unpaired data for training[24,1,14,12].

Despite impressive results, these methods encounter challenges as they re-
quire both LDCT and NDCT images [18], either paired images or a large amount
of unpaired images, which are often unavailable in practice due to high costs,
privacy, and ethical concerns. Therefore, it is essential to develop self-supervised
methods that harness the potent capabilities of deep neural networks while min-
imizing the need for extensive labeled data. Several self-supervised methods have
been proposed for LDCT denoising, including but not limited to Blin2Unblind [28],
Noise2Sim [23], Neighbor2Neighbor [10] and FIRE [19] among others [26,13,28].
However, these methods primarily concentrate on spatial domain information,
overlooking the critical importance of frequency domain details. The crucial
distinction between low-dose CT and normal-dose CT in high-frequency compo-
nents (see Fig. 1) is not well explored.

In this paper, we design a novel self-supervised LDCT denoising method, only
using NDCT data, called WIA-LD2ND. We first analyze LDCT denoising task
from the frequency perspective and then propose a module called Wavelet-based
Image Alignment (WIA), which aligns LDCT with NDCT by mainly adding
noise to the high-frequency components of both LDCT and NDCT. We also
propose a module called Frequency-Aware Multi-scale Loss (FAM) to capture
high-frequency components in multi-scale feature space.

Our WIA-LD2ND offers three major contributions as follows: 1) We analyze
the LDCT denoising task from a frequency perspective, offering novel insight into
its optimization. 2) We introduce a simple and efficient module to align NDCT
and LDCT, facilitating self-supervised learning. 3) We propose a frequency-aware
multi-scale loss, enabling the reconstruction network to effectively handle high-
frequency components.

2 Method

Figure 2 presents the overview of the proposed WIA-LD2ND, comprising of two
novel modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware
Multi-scale Loss (FAM). NDCT image x is passed through the WIA to destroy
some high-frequency components and then fed into the reconstruction network.
The high-frequency components of the reconstructed CT y and input x, [yLH ,
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(a) Visualization of the results of NDCT
and LDCT after Wavelet transform results

(b) LF components
of NDCT

(c) LF components
of LDCT

(d) HF components
of NDCT

(e) HF components
of LDCT

Fig. 1. (a) Visualization of results of NDCT and LDCT after Discrete Wavelet Trans-
form (DWT). The primary differences between NDCT and LDCT are at the high
frequency components [LH,HL,HH]. (b-c) Visualize the normalized low-frequency
(LF) component LL features of NDCT and LDCT, while (d-e) display the normalized
high-frequency (HF) component [LH,HL,HH] features. We adopt the first residual
block of pre-trained ResNet-18 [9] to extract image features.

yHL, yHH ] and [xLH , xHL, xHH ], are relatively flat and hard to capture [5],
as shown in Fig. 1 (a). To address this challenge, we propose integrating these
high-frequency components into encoders to compute a loss LFAM within the
feature space to enhance the capability of the reconstruction network in captur-
ing high-frequency components and detailed information more effectively. During
training, we employ an alternating learning strategy to optimize the reconstruc-
tion network and FAM to improve learning efficiency and accuracy of results,
which is similar to GAN-based methods [32]. We begin by analyzing the LDCT
denoising task from a novel perspective, followed by detailed introduction of the
two proposed modules.

2.1 Analysis of LDCT Denoising From Frequency Perspective

Images contain different frequency ranges and spatial locations information. The
Discrete Wavelet Transform (DWT), using the Haar wavelet as in [17], is se-
lected for frequency analysis for its simplicity and efficiency. DWT is commonly
employed in the field of computer vision and offers a straightforward and com-
putationally effective technique for dividing the input image into low-frequency
sub-band and high-frequency sub-bands. It has four filters, LLT , LHT , HLT

and HHT , demonstrating the texture, horizontal details, vertical details, and
diagonal information respectively [29], in which low and high pass filters are:
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Fig. 2. Overview of our proposed WIA-LD2ND. NDCT image x is passed through the
WIA and then fed into the reconstruction network. The high-frequency components of
the denoised CT y and the input image x are both fed into FAM to compute the loss
capturing high-frequency components in multi-scale feature space.

LT =
1√
2
[1, 1], HT =

1√
2
[−1, 1] (1)

As shown in Fig. 1 (a), after DWT, the main differences between normal-
dose CT (NDCT) and low-dose CT (LDCT) are observed in the high-frequency
sub-images [LH,HL,HH], with little difference in the LL. Fig. 1 (b-e) further
support our conclusion, demonstrating that LDCT and NDCT have significant
differences in the high-frequency components at the feature space, while differ-
ences in the low-frequency components are comparatively minor. In Fig. 3 (a-c)
and Fig. 4, we find that previous LDCT denoising methods such as BM3D [3]
performs poorly at reconstructing high-frequency components.

Based on these observations, we conclude that high-frequency components
should be the main focus for LDCT denoising, where previous methods falter the
most. This highlights the critical necessity for improved techniques in handling
high-frequency components during the denoising process.
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Fig. 3. (a-c) Visualization of NDCT, residual between NDCT and result of BM3D [3]
(a classical denoising method), and high-frequency components in spatial domain. The
residual is converted into a clean binary image for clarity. We filter high-frequency
band from image and then convert the result into a binary image. (d-e) Visualization
of the tSNE images of feature distribution on the NDCT, LDCT, and their respective
transformations after applying WIA on Mayo-2016 dataset. We adopt the first residual
block of pre-trained ResNet-18 to extract image features.

2.2 Wavelet-based Image Alignment

According to previous analysis, we employ the Discrete Wavelet Transform
(DWT) to decompose the input image x into two sets of components: low-
frequency component denoted as xLL, which captures and preserves the smooth
surface and texture information, and high-frequency components denoted by
[xLH , xHL, xHH ]. These high-frequency components are essential for capturing
intricate texture details, representing the primary distinctions between low-dose
CT (LDCT) and normal-dose CT (NDCT) images. Therefore, we make them
similar in a simple and effective way, by mainly adding Gaussian noise into the
high-frequency components of NDCT and LDCT images.

x′
LL = xLL + noiseLL, x′

LH = xLH + noiseLH ,

x′
HL = xHL + noiseHL, x′

HH = xHH + noiseHH ,
(2)

where noiseLL, noiseLH , noiseHL, noiseHH follow Gaussian distributions with
mean 0 and variance σ2

LL, σ
2
LH , σ2

HL, σ
2
HH , respectively. Notably, σLH , σHL, and

σHH are larger than σLL. We then conduct inverse DWT (IDWT) on the mod-
ified components [x′

LL,x
′
LH , x′

HL, x
′
HH ] to reconstruct x′. As shown in Fig. 3

(d-e), after applying WIA module, NDCT and LDCT images share the same
feature space, indicating successful alignment.

WIA eliminates the need for paired data. Instead, we only require NDCT
images for training a model to denoise from x′ (NDCT after WIA) to x (original
NDCT), thereby facilitating self-supervised learning.

2.3 Frequency-Aware Multi-scale Loss

High-frequency components play a crucial role in low-dose CT images denoising,
as analyzed in Sec. 2.1. However, the CNN-based and Transformer-based models
tend to focus primarily on low-frequency representations, making it difficult
for models to capture the high-frequency components [5]. Therefore, we design
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Frequency-Aware Multi-scale Loss (FAM) which is to focus the network more
on the high-frequency components and detail information of the images.

The high-frequency components of denoised CT y and NDCT x, [yLH , yHL,
yHH ] and [xLH , xHL, xHH ], are fed into Online Encoder E and Target Encoder
E′, respectively, both using the same lightweight architecture. Following previous
studies [6,8], the parameters of the Target Encoder E′ are an exponential moving
average of the parameters in the Online Encoder E. The process is as follows:

f1, f2, f3 = E(xLH , xHL, xHH), f ′
1, f

′
2, f

′
3 = E′(yLH , yHL, yHH). (3)

We introduce a Frequency-aware Attention mechanism in the encoders, de-
signed to selectively emphasize or de-emphasize areas within the input feature
map based on their frequency content, as illustrated in Fig. 2 Given the input
feature map fn{n=1,2,3}, we apply max and average pooling to extract prominent
features. We then concatenate them and pass through a convolutional layer with
Sigmoid activation to generate spatial attention weights.

Unlike previous studies [2,30], our approach segments multi-scale features

extracted from specific layers into patches f
(i)
n . We then select patches that are

most similar to their adjacent counterparts, focusing on those that exhibit shared
structural characteristics closely associated with high-frequency components. To
this end, we use the cosine similarity s on the feature space:

s(i, j) = f (i)⊤f (j)/∥f (i)∥2∥f (j)∥2. (4)

We then select the similar feature patches {f (j)
n }j∈P (i) , where P (i) is a set of

feature patch indices of top-4 patches. For the f ′(i) from the Online Network, we
select the same positive feature patches P (i). We then aggregate positive patches

{f (j)
n }j∈P (i) and {f ′(j)

n }j∈P (i) using global average pooling (GAP) and multi-layer
perceptron (MLP) yielding g and g′, respectively. Finally, the Frequency-Aware
Multi-scale Loss LFAM is given by:

LFAM = ∥g − g′∥22. (5)

The final loss is defined as L = Lpixel(x, y) + λLFAM , where Lpixel consists
of two common supervised losses: MSE and SSIM, defined as Lpixel(x, y) =
LMSE(x, y) + LSSIM (x, y). λ is set to 0.01 in this paper.

3 Experiments

3.1 Dataset and Training Details

We conduct experiments on two public LDCT denoising datasets, Mayo-20164

and Mayo-20205, from the NIH AAPM-Mayo Clinic Low-Dose CT Grand Chal-
lenge [21,22]. We select 5410 image pairs (512×512) from 9 patients in Mayo-2016

4 https://ctcicblog.mayo.edu/2016-low-dose-ct-grand-challenge/
5 https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=

52758026

https://ctcicblog.mayo.edu/2016-low-dose-ct-grand-challenge/
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=52758026
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=52758026
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Table 1. Performance comparison on the Mayo-2016 [21] and Mayo-2020 [22] datasets.
The best result is in bold, and the second best is underlined.

Methods
Mayo-2016 Mayo-2020 Avg

PSNR SSIM PSNR SSIM PSNR SSIM
BM3D (TIP2007) [3] 35.50 86.95 37.67 89.53 36.59 88.24
DIP (CVPR2018) [26] 37.25 85.94 40.16 95.89 38.71 90.92
Noise2Sim (TMI2022) [23] 38.51 90.15 39.16 90.90 38.84 90.53
Blind2Unblind (CVPR2022) [28] 35.84 81.15 40.96 94.84 38.40 88.00
Neighbor2Neighbor (TIP2022) [10] 35.27 86.79 36.78 94.06 36.03 90.43
ZS-N2N (CVPR2023) [20] 38.10 87.64 44.00 97.06 41.05 92.35
CycleGAN (ICCV2017) [32] 37.68 89.22 40.18 97.93 38.93 93.58
CUT (ECCV2020) [24] 37.96 89.93 41.11 97.61 39.54 93.77
WIA-LD2ND (ours) 38.15 90.00 44.64 98.31 41.40 94.16

LDCT NDCT BM3D

CUTCycleGAN

Noise2Sim

Blind2Unblind Ours

DIP

 Neighbor2Neighbor 

Fig. 4. Qualitative comparison of different methods on the Mayo-2020 dataset [22].

for training and 526 for testing. We select the reconstruction parameter combi-
nation of {1mm, D45}. From Mayo-2020, 2082 pairs (512×512) from 12 patients
are used for training, with 672 pairs from 4 patients for testing.

In all our experiments, we only use NDCT and choose a backbone identical to
that used in [32,24], along with employing the same data augmentation strategy
as in [2]. For Mayo-2016, we set σLL = 100, σLH = 200, σHL = 200, and σHH =
150 in Eq. (2). For Mayo-2020, the noise variances are σLL = 25, σLH = 50,
σHL = 50, and σHH = 50. We employ the Adam optimizer with the momentum
parameters as β1 = 0.9, β2 = 0.99 and initial learning rate 1.0 × 10−4. Our
network is trained over 200 epochs using a single NVIDIA GeForce RTX 3090.

3.2 Experiments Results

To evaluate the denoising efficacy of our WIA-LD2ND, we conduct compara-
tive experiments against various denoising methods. The comparisons include
traditional methods like BM3D [3], self-supervised methods including DIP [26],
Noise2Sim [23], Blind2Unblind [28], Neighbor2Neighbor [10] and ZS-N2N [20] as
well as weakly-supervised methods such as CycleGAN [32] and CUT [24]. We
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Table 2. Ablation studies are conducted to validate the effectiveness of each module
on the Mayo-2016 [21] and Mayo-2020 [22] datasets. WIA* represents directly adding
Gaussian noise to NDCT, while FAM* denotes the computation of high-frequency
components of y and x at the feature level by directly employing the MSE loss.

Methods #Params
Mayo-2016 Mayo-2020 Avg

PSNR SSIM PSNR SSIM PSNR SSIM
Baseline 11.37M 34.26 78.03 40.32 96.99 37.29 87.51

Baseline + WIA* 11.37M 35.49 87.73 42.00 98.26 38.75 93.00
Baseline + WIA 11.37M 37.85 89.77 42.73 98.26 40.29 94.02

Baseline + FAM* 13.83M 34.00 79.12 41.97 98.02 37.99 88.69
Baseline + FAM 13.83M 34.78 80.27 42.46 98.25 38.62 89.15
WIA-LD2ND 13.83M 38.15 90.00 44.64 98.31 41.40 94.16

use two widely-adopted metrics, namely peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) to evaluate the performance.

Table 1 shows that our WIA-LD2ND, only using NDCT images, can achieve
good performance on both the Mayo-2016 and Mayo-2020 datasets. Compared
to the latest state-of-the-art self-supervised and weakly-supervised methods, our
WIA-LD2ND achieves significant performance improvements.

Figure 4 presents the reconstruction results, with the subplots in the bottom
left corner of the pictures showing the noise power spectrum (NPS), where blue
indicates it is closer to the normal-dose CT. As illustrated, our WIA-LD2ND
achieves the best results, reconstructing the most detailed information and ex-
hibiting the bluest NPS. Conversely, the results of BM3D and DIP are over-
smoothed and compromised with structured artifacts. Additionally, other deep-
learning-based methods tend to remove noise aggressively. Our WIA-LD2ND
prioritizes the preservation of informative details.

Ablation Studies. To evaluate the effectiveness of our proposed modules, in-
cluding WIA and FAM, we conduct ablation experiments on Mayo-2016 [21] and
Mayo-2020 [22]. The results are shown in Table 2. WIA* represents adding noise
directly to NDCT, while FAM* involves the computation of MSE loss directly
for the feature of high-frequency components. Our designs achieve better perfor-
mance than their variants. It reveals that both WIA and FAM are well-designed
and contribute to performance gains. More ablation studies on additional hyper-
parameters and noise parameters are available in the supplementary materials.
WIA-LD2ND incurs an increase of 2.46M parameters compared to the baseline.
Considering the significant performance improvement over the baseline model
without any extra inference time, this slight increase in training cost is
acceptable.

4 Discussion and Conclusion

In this paper, we analyze the LDCT denoising task from a novel perspective and
propose a self-supervised method called WIA-LD2ND. This method only utilizes
NDCT images and incorporates two novel modules: Wavelet-based Image Align-
ment (WIA), which aligns NDCT and LDCT by destroying some high-frequency
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components, and Frequency-Aware Multi-scale Loss (FAM), which enhances the
reconstruction network’s ability to capture high-frequency components and de-
tailed information, thus improving denoising performance. Extensive experimen-
tal results demonstrate the superior performance and the effectiveness of our
designs. It is noteworthy that WIA-LD2ND increases the number of parameters
by 2.46M compared to the baseline during training, without requiring extra in-
ference time. Exploring LDCT denoising from a frequency perspective presents
a promising direction for future research.
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