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Abstract. Automated generation of radiology reports from chest X-rays
has the potential to substantially reduce the workload of radiologists.
Recent advances in report generation using deep learning algorithms
have achieved significant results, benefiting from the incorporation of
medical knowledge. However, incorporation of additional knowledge or
constraints in existing models often require either altering network struc-
tures or task-specific fine-tuning. In this paper, we propose an energy-
based controllable report generation method, named ECRG. Specifically,
our method directly utilizes diverse off-the-shelf medical expert models
or knowledge to design energy functions, which are integrated into pre-
trained report generation models during the inference stage, without any
alterations to the network structure or fine-tuning. We also propose an
acceleration algorithm to improve the efficiency of sampling the complex
multi-modal distribution of report generation. ECRG is model-agnostic
and can be readily used for other pre-trained report generation models.
Two cases are presented on the design of energy functions tailored to
medical expert systems and knowledge. The experiments on widely used
datasets Chest ImaGenome v1.0.0 and MIMIC-CXR demonstrate the
effectiveness of our proposed approach.

Keywords: Radiology report generation · Chest X-ray · Energy based
model · Controllable generation

1 Introduction

Chest radiography (chest X-ray, CXR) is currently the most prevalent medical
imaging examination, serving as a pivotal tool in clinical diagnoses [19] and
epidemiological research [18]. Writing a comprehensive and accurate radiology
report proves to be a challenging and time-consuming task in practice. As a
result, automated interpretation of chest X-rays through deep learning models
has garnered considerable interest for its potential to substantially alleviate the
workload of radiologists and enhance clinical efficiency.

Automatic radiology report generation is a challenging task, as it essentially
involves converting complex visual input of chest X-rays into long text output
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Fig. 1. Overview of the proposed ECRG framework for radiology report generation.

that accurately describes the medical observations. Recently, extensive works
[3,11,24,26,28] has been devoted to generating informative and semantically co-
herent reports using deep learning algorithms. These approaches typically follow
the encoder-decoder paradigm and existing methods can be categorized into two
main concepts. The first involves designing improved network structures or train-
ing losses for the image encoder and text decoder to enhance cross-modal feature
matching. For example, R2Gen [3] introduced a relational memory to record key
information and integrate it into the Transformer decoder. AlignTransformer
[26] proposed an align hierarchical attention module and a multi-grained Trans-
former structure to address issues related to data bias and long sequences. RGRG
[22] employed an object detector to extract anatomical regions and produced
corresponding localized visual features, which were then leveraged to gener-
ate sentences delineating anatomy-specific pathological observations. However,
such approaches necessitate modifications to the network structures, leading to
limited flexibility and transparency. The second concept involves incorporating
additional medical knowledge into the process of image feature extraction or
text generation. For instance, PPKED [11] integrated disease labels and medical
knowledge graphs into the encoder process to mitigate visual and textual data
biases. [28] introduced a graph convolutional neural network pre-constructed
on multiple disease findings to assist report generation. Despite advancements
in medical knowledge-guided report generation, these methods still require the
customization of intricate network architectures and retraining.

In this paper, we propose an Energy-based Controllable Radiology Report
Generation (ECRG) method to cope with the above issues. As illustrated in
Fig. 1, ECRG circumvents the training process and flexibly integrates various off-
the-shelf pre-trained medical expert systems into the report generation pipeline
using the energy-based framework. The contributions of our work are as follows:
1)Inspired by constrained text generation [14,17], we propose ECRG framework
to bypass the training process and utilize medical knowledge to control report
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generation during the inference phase. 2)We present two cases illustrating the
use of pre-trained expert models and medical prior knowledge to design energy
functions aimed at improving radiology report generation within the ECRG
framework. 3)Lastly, we devise an acceleration algorithm based on the idea of
flat histogram simulation [6,9,23] to improve the efficiency of report generation.
Experimental results on large public datasets Chest ImaGenome v1.0.0 [25] and
MIMIC-CXR [7,8] confirm the effectiveness of our proposed approach.

2 Method

2.1 Energy-based Controllable Report Generation

Given a radiology image I, the task of radiology report generation aims to auto-
matically generate a descriptive report R = {X1, X2, ..., XN}, where Xi denote
the sentences in the report. Typically, this task is achieved with an encoder-
decoder framework: 1)encoding : The radiology image I is first encoded to an
image embedding eI = Encoder (I). 2)decoding : Then, a report generation
language model PLM computes the probability distribution of the sequences
pLM (X) = LM (X, eI). The final radiology report is obtained from the prob-
ability distribution of the sequences through different search strategies (e.g.,
greedy search, beam search, sampling, etc.).

We draw inspiration from the constrained text generation [14,17] and use an
energy-based framework during the decoding process to enhance the generated
reports. Let pexpt denote the sequence distribution satisfying a certain desired
attribute, which is governed by a specific medical expert model Pexpt. Generating
radiology reports (sequences) using the report generation model PLM , enhanced
by various expert systems, can be viewed as drawing samples from the following
distribution that defined by an energy-based model:

p (X) = elog(pLM (X)·
∏

i λip
i
expt(X))/Z (1)

where λi ≥ 0 denote the weight of the i-th expert model constraint, and Z is
a normalization constant. Intuitively, the Boltzmann distribution in Eqn. (1)
can be seen as a revised report generation distribution, which corrects the pre-
trained distribution pLM (X) through a weighted multiplication of the desired
attribute distributions piexpt (X). Here, the energy function can be written as:

E (X) = −log (pLM (X))− log
(∏

i λip
i
expt (X)

)
= ELM (X) +

∑
i Ei (X) (2)

whose energy values are linear combinations of scores from various independent
energy functions. In this way, we can flexibly and controllably incorporate arbi-
trary energy functions Ei (X) that are defined by pre-trained black-box expert
systems P i

expt (e.g. pathological discriminators or medical prior knowledge) into
the off-the-shelf report generation model PLM , without any structural change
or task-specific fine-tuning. Furthermore, the energy function is defined over a
sequence consisting of continuous vectors X = {x1, ..., xT }, where xt (v) ∈ RV

denote the logits of token v in position t, and V is the size of the vocabulary.



4 Z. Hou et al.

In general, each expert model scores a desired attribute of the generated
reports. These attributes can be medical diagnosis information, disease distribu-
tion, and pathological relationships, etc. We view the product of these medical
expert models as a probabilistic energy model, allowing a flexible combination
of various heterogeneous attributes and refining the report generation distribu-
tion during the inference phase. To ensure applicability, the pre-trained expert
model in the proposed ECRG framework requires accurately reflecting the sat-
isfaction degree of the relevant medical attributes through the score, which is
used to calculate the energy function in Eqn. (2) and thus affects the quality of
the generated report.

2.2 Heuristic Constraints with Medical Knowledge

The proposed framework is model-agnostic and can be transferred to other pre-
trained report generation models. As an example, we utilize the recently pro-
posed anatomical region-guided report generation model RGRG [22] as PLM . As
shown in Fig. 1, given a frontal chest X-ray image, RGRG [22] initially employs
an object detector to extract anatomical regions and produce corresponding lo-
calized visual features. These features are then leveraged to generate sentences
delineating anatomy-specific pathological observations.

Fusion of Multi-grained Medical Image Information Generating sen-
tences that describe specific anatomical regions enhances the transparency and
interpretability of report generation, while discerning certain pathological obser-
vations necessitates holistic consideration of the global X-ray image. For instance,
"Cardiomegaly" is a significant pathological observation, with positive cases ac-
counting for 17.2% of the MIMIC-CXR dataset. Diagnosing this disease necessi-
tates the calculation of the cardiothoracic ratio, thus requiring the integration of
multi-granularity features extracted from global and local X-ray images to gener-
ate accurate descriptions of the anatomical region "Cardiac Silhouette". We use
a pre-trained chest X-ray image classifier Dl from the TorchXRayVision library
[4] to acquire the identification result of label l, Dl (I) ∈ [0, 1]. This result con-
taining global image information is then utilized to construct an energy function
Eglobal (X), which governs the medical semantics of the generated descriptions
of the corresponding region. The expression of the fused energy function is:

Efuse (X) = ELM (X) + Eglobal (X) = Elocal (X) + Eglobal (X)

= −
∑T

t=1

∑
T

v∈V
pLM (v | X<t, Il) logsoftmax (Xt (v))

− [2 ·Dl (I)− 1] · φsim (X | X∗)

(3)

where pLM (· | X<t, Il) denotes the distribution of the next token when providing
the region-based report generation model PLM with previous tokens X<t. Intu-
itively, the energy function ELM (X) employs negative cross-entropy to align the
distribution of generated sequences Xt with that represented by the pre-trained
report generation model pLM (· | X<t, Il). φsim (X | X∗) represents the seman-
tic similarity between the generated sequence X and the reference sequences
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describing specific diseases. This is achieved by computing the BERTScore [27]
between the two sequences. The linear combination of ELM and Eglobal compre-
hensively incorporates local and global features of CXR images into the report
generation process. Unlike other methods that introduce medical knowledge with
structural modifications or fine-tuning, our proposed approach only requires de-
signing energy functions based on attributes of the pre-trained expert systems.

Fusion of Anatomical Region-based Prior Knowledge The energy func-
tion ELM (X) in Eqn. (3) implicitly ensures the quality of the generated se-
quences, leveraging the pre-trained report generation model. However, the maxi-
mum likelihood estimation (MLE) employed in training such autoregressive lan-
guage models, along with the aforementioned modifications to the underlying
probability distribution, may cause text degradation, such as inconsistency with
the corresponding anatomical region, information loss, etc. For example, the
generated description of the "Left Lung" region by the RGRG model may only
involve the observation "Pneumothorax" while ignoring other diseases. Hence,
we devise an energy function that imposes soft constraints on presence/absence
of keywords (or sequences) Wr related to the corresponding anatomical region
r (according to medical prior knowledge in Fig. 1), prompting the generation of
relevant descriptions and suppressing irrelevant ones to alleviate text degrada-
tion:

Eprior (X) =
∑

j ±fn−gram
match

(
X,W j

r

)
(4)

where + and − control the presence and absence of keywords (sequences).
fn−gram
match (·, ·) represents a differentiable matching loss EISL [12] based on n-gram

similarity, where f1−gram
match (·, ·) is suitable for keywords and fn−gram

match (·, ·) , n > 1
is suitable for sequences of length n.

The overall energy function of this anatomical region can be expressed as:

E (X) = λ1ELM (X) + λ2Eglobal (X) + λ3Eprior (X) (5)

2.3 Accelerate Report Generation

Generating enhanced radiology reports can be interpreted as sampling from the
energy-based model E (X) in Eqn. (5). Given the differentiability of the afore-
mentioned energy functions, Langevin dynamics can be employed for sampling
by forming a Markov chain: X(k+1) ← Xk− η

2▽XE
(
Xk

)
+ϵk as in [17], where Xk

is the sample at iteration k, η denotes the step size and ϵk ∈ N (0, σ) is the ran-
dom noise. By iteratively applying this update rule, a sequence of samples that
adhere to the target report distribution can be progressively generated. How-
ever, when dealing with the complex multi-modal distribution p (X) = e−E(X)

of sequences X in controllable report generation, crossing the energy barriers
becomes challenging, leading to low efficiency and suboptimal sampling.

We adopt the principles of flat histogram simulations [6,9,23] form physics
to expedite the process of sampling reports. The sample space of sequence X
is partitioned into m disjoint subspaces {s1, s2, ..., sm} with equal-size energy
levels si = {X : Ei−1 < E (X) < Ei}, according to the energy function E (X).
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We introduce an auxiliary variable

ϕθ (E (X)) =
∑m

i=1

(
θ (i− 1) e

(logθ(i)−logθ(i−1))
E(X)−Ei−1

△E(X)

)
1E(X)∈si (6)

parameterized by θ to simulate from a falattend density p̃ (X) = p(X)
ϕθ(E(X)) , where

1(·) denotes the indicator function. ϕθ (E (X)) monitors the spectral density of
each energy subspaces during sampling, thus facilitates traveling across energy
barriers in the rugged energy landscape of E (X), accelerating controllable report
generation. Here, the sequence X can be efficiently sampled with the Markov
chain:

Xk+1 = Xk − ηk+1

[
1 +

logθk
(
In

(
Xk

))
− logθk

((
In

(
Xk

)
− 1

)
∨ 1

)
△E (X)

]
▽X E (X) + δ

(7)
where In

(
Xk

)
denotes the index that E

(
Xk

)
belongs to. ηk+1 is the learning

rate and δ =
√
2ηk+1ϵk+1, ϵk+1 ∈ N (0, σ) is the random noise. At the end

of the iteration k, we update the spectral density for subspace si according to
θk+1 (i) = θk (i) + ϵk+1θk (In (Xk+1))

(
1i=In(Xk+1) − θk (i)

)
3 Experiments and Results

3.1 Datasets and Experimental Settings

We conduct experiments on the open-source Chest ImaGenome v1.0.0 [25] dataset,
which is derived from the most widely used public dateset MIMIC-CXR [7,8],
which consists 77,110 chest X-ray images corresponding to 227,835 free-text radi-
ology reports. The Chest ImaGenome dataset extends the MIMIC-CXR dataset
with automatically constructed scene graphs. Each scene graph includes a frontal
MIMIC-CXR image and corresponding bounding box coordinates of 29 anatom-
ical regions. Additionally, the sentences in the findings section of the free-text
radiology reports are assigned to the anatomical region they describe, enabling
region-guided radiology report generation.

As previously mentioned, our method is model agnostic and we adopt RGRG
[22] as the baseline model. For fair comparison, we employ the exact same data
processing method, network structure, and pre-trained model as the baseline
method. We use the model "xrv.models.DenseNet" available in the TorchXRayVi-
sion library [4] as the pathological discriminator Dl, which loads the pre-trained
weights "densenet121-res224-all". We use the pre-trained uncased base version
of DistilBERT [20] ("distilbert-base-uncased"), obtained from Huggingface, to
compute BERTScore [27] for semantic similarity measure of sequences. Since
BERTScore can capture sentences with similar semantics but different expres-
sions, a simple reference sentence list suffices for the description of certain dis-
eases, e.g., we use ["There is cardiomegaly.", " heart size is enlarged." "cardiac
silhouette is enlarged." ] for "Cardiomegaly". The weights of the linear combina-
tions of energy functions defined by different expert systems in Eqn. (5) are set
to 0.5, 0.3, and 0.2. For report generation sampling, the length of the generated
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Table 1. Natural language generation (NLG) metrics and clinical efficacy (CE) metrics
micro-averaged over 14 observations for the report generation task.

Method B-1 B-2 B-3 B-4 METEOR ROUGE-L P14 R14 F1,14

RGRG[22] 0.373 0.249 0.175 0.126 0.168 0.264 0.461 0.475 0.447

ECRG(Multi) 0.366 0.242 0.167 0.123 0.173 0.260 0.464 0.481 0.471

ECRG(Prior) 0.382 0.255 0.178 0.128 0.161 0.269 0.456 0.513 0.482

ECRG(Full) 0.379 0.253 0.175 0.123 0.164 0.266 0.460 0.519 0.488

sequence X is fixed to 10, and pLM is used to produce the continuation of X by
greedy search until the end of the sentence. We run the Markov chain for 2,000
steps in advance to determine the upper and lower bounds of the energy. The
energy space is then partitioned into 50 subregions, and the learning rate η is
set to 0.01. The batch size for Langevin dynamics is set to 32, and the sample
with the minimum loss is selected as the final generated sequence.

We compute widely used Natural Language Generation (NLG) metrics: BLEU
[15], METEOR [1], and ROUGE-L [10] to assess the quality of the generated
reports. The NLG metrics measure textual similarity between the generated
reports and the reference reports, but are ill-suited to capture the clinical cor-
rectness of generated reports [2,13,16]. Further, we also report the clinical effi-
cacy (CE) metrics to measure the diagnostic accuracy of generated reports. The
CE metrics compare the presence status of 14 clinical observations (extracted
from reports by CheXbert [21]) between the generated reports and the reference
reports. Since the data with different clinical observation labels in the MIMIC-
CXR dataset are unbalanced, we compute the CE scores by micro-averaging
over 14 observations following [5,22]. Higher micro-averaged scores imply better
performance for major disease categories.

3.2 Results and Analysis

The comparison of the quality of reports generated by different methods are
shown in Table 1. RGRG [22] is the baseline model, ECRG(Multi) and ECRG(Prior)
respectively represent adding the multi-grained image information fusion mod-
ule, as well as the region-specific information fusion module to the baseline model
for ablation. ECRG(Full) denotes the full model described in Eqn. (5).

We can observe that ECRG(Full) achieves better or comparable performance
on NLG metrics compared to the baseline model, indicating that the energy-
based control method can ensure the quality of generated reports. ECRG(Multi)
has a slight decrease on the n-gram (i.e., word overlap) based metrics (i.e., BLEU
and ROUGE-L) due to the competing constraint that sacrifice words matching
during the decoding process. Different from the n-gram metrics, the METEOR
metric takes similarity matches between words into account, which correlates
better with semantic judgments of report quality. ECRG(Multi) shows supe-
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Fig. 2. (a) Generated reports for anatomical regions with different methods from chest
X-ray images. (b) The process of accelerated sampling, as well as the loss comparison
of different sampling methods during the Markov chain transition

rior performance on METEOR than the baseline method. This is because the
image-level information improves the diagnostic accuracy of medical observation,
while the similarity constraint steer the decoding procedure to generate sentences
that are semantically closer to the reference report. Additionally, ECRG(Prior)
achieves better NLG scores due to the soft constraints on keywords or sequences
related to corresponding anatomical region. As for the CE metrics that mea-
sure the diagnostic accuracy of generated reports, ECRG(Multi) achieves higher
scores because the pre-trained expert system can make more accurate judg-
ments about diseases based on global image features. ECRG(Prior) significantly
improves the recall of diseases with anatomical region-specific soft constraints,
which is significant because missed diagnoses are often unacceptable in the medi-
cal field. The full model integrating these two modules also achieves better recall
and f1 score, as well as comparable precision to the baseline model. which illus-
trates that our proposed energy-based controllable report generation framework
can effectively improve the diagnostic ability of generated reports.

The visualization of the generated report is shown in Fig. 2. The first row
shows a report generated for the "Cardiac Silhouette" region. RGRG [22] gen-
erates corresponding reports based solely on local region features and fails to
diagnose "Cardiomegaly". In contrast, the proposed ECRG method compre-
hensively considers global and local image information, accurately diagnosing
"Cardiomegaly" and generating correlated descriptions. The second row shows
a report generated for the "Left Lung" region. ECRG introduces soft constraints
with anatomical region-specific keywords/sequences [pneumothorax,pleural effu-
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sion,pneumonia], reducing the misdiagnosis rate of diseases. Additionally, Fig. 2
also illustrates the process of accelerated sampling, along with the loss com-
parison of different sampling methods during the Markov chain transition. Our
proposed acceleration algorithm can produce reasonable samples in about 800
iterations, while the vanilla Langevin dynamics requires approximately 5,000
iterations to generate comparable reports.

4 Conclusion

In this paper, we have devised an energy-based controllable radiology report
generation method, which is model-agnostic and can be transferred to other
pre-trained report generation models. Unlike state-of-the-art alternatives, we di-
rectly leverage off-the-shelf medical expert models or knowledge to formulate
energy functions, which are then incorporated into pre-trained langeuage mod-
els for report generation during the reference stage, without any modifications to
the network structures or fine-tuning. We also devised an acceleration algorithm
to efficiently sample complex multi-modal distributions in controllable report
generation. Regarding the limitations of ECRG, first, it is necessary to design
reasonable energy functions, whose values accurately reflect the properties of
the pre-trained models. Additionally, although the ECRG framework based on
the energy model can flexibly combine various heterogeneous energy functions
through linear combination, different energy functions may inhibit each other.
Addressing these problems warrants in-depth research and discussion in the fu-
ture.
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