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Abstract. Tumor lesion segmentation on CT or MRI images plays a
critical role in cancer diagnosis and treatment planning. Considering the
inherent differences in tumor lesion segmentation data across various
medical imaging modalities and equipment, integrating medical knowl-
edge into the Segment Anything Model (SAM) presents promising capa-
bility due to its versatility and generalization potential. Recent studies
have attempted to enhance SAM with medical expertise by pre-training
on large-scale medical segmentation datasets. However, challenges still
exist in 3D tumor lesion segmentation owing to tumor complexity and
the imbalance in foreground and background regions. Therefore, we intro-
duce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored
for 3D tumor lesion segmentation. We propose a novel Mask-Enhanced
Adapter (MEA) within M-SAM that enriches the semantic informa-
tion of medical images with positional data from coarse segmentation
masks, facilitating the generation of more precise segmentation masks.
Furthermore, an iterative refinement scheme is implemented in M-SAM
to refine the segmentation masks progressively, leading to improved per-
formance. Extensive experiments on seven tumor lesion segmentation
datasets indicate that our M-SAM not only achieves high segmentation
accuracy but also exhibits robust generalization. The code is available at
https://github.com/nanase1025/M-SAM.
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1 Introduction

Tumor lesion segmentation[12] aims to identify and delineate regions of abnor-
mal tissue in medical images, e.g., computed tomography (CT) or magnetic res-
onance imaging (MRI). It plays a critical role in the processes of cancer diagnosis
and treatment planning. Since manual segmentation is extremely labor-intensive
and requires a high level of expertise, deep learning based approaches [19,16]
have been introduced to improve efficiency and reduce the workload of physi-
cians. Earlier works [26,8] mainly rely on manually designed kernels to construct
the segmentation architecture. In recent years, the U-Net architecture [18] has
emerged as one of the most well-known structures for medical image segmenta-
tion [25,9] given its effective extraction and utilization of multi-scale information.
However, it still struggles to capture long-range spatial dependencies for data
with extended sequence lengths. Additionally, applying a U-Net model trained
on one specific dataset to others with distribution shifts may lead to significant
performance degradation. As a result, methods based on U-Net architecture
often exhibit limited performances in lesion segmentation tasks, which are char-
acterized by imbalanced foreground and background regions and require high
precision.

In natural image segmentation, the Segment Anything Model (SAM) [14] has
shown exceptional versatility and impressive performance across various tasks.
It is constructed on the Transformer [21] architecture, which is inherently better
suited for learning long-range spatial dependencies. Due to being trained on a
vast amount of data, it also shows strong generalization capabilities in segmen-
tation. Furthermore, it contains an interactive system to prioritize regions of
interest based on clinician cues, providing a more precise and flexible experi-
ence. However, due to limited knowledge in the medical imaging domain, SAM
produces unsatisfactory results in medical image segmentation tasks [20].

Recently, a variety of studies [17,22,24,5,15,7,23] have sought to integrate
medical expertise into SAM to enhance its capabilities for medical applications.
For example, MedSAM [17] refines the decoder with a large amount of medical
data and Med-SA [24] extends the SAM architecture using a lightweight and
effective adaptation technique. However, these approaches involve slice-by-slice
processing of volumetric images, which may lead to suboptimal performance
on 3D medical images for disregarding inter-slice 3D spatial information. SAM-
Med3D [22], through a comprehensive reformatting of SAM into a fully 3D archi-
tecture and extensive pre-trained on 3D medical images, has demonstrated com-
petitive performance in general medical segmentation scenarios such as multi-
organ segmentation. However, for the task of tumor lesion segmentation which
features huge variability of tumor characteristics (e.g., shape, size, location, and
appearance) and imbalanced tissue and tumor regions, SAM-Med3D [22] still
obtains less than satisfactory performances.

In this work, we propose a novel architecture named Mask-Enhanced SAM
(M-SAM) to adapt SAM-Med3D to 3D tumor lesion segmentation tasks. A new
Mask-Enhanced Adapter (MEA) is developed to enhance the semantic informa-
tion contained in image embeddings with the positional information contained
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Fig. 1. Overall architecture of Mask-Enhanced SAM (M-SAM).

in coarse segmentation masks, which further helps the generation of refined seg-
mentation masks. To reuse as many parameters of the pre-trained SAM-Med3D
as possible, our MEA is designed to be plug-and-play and inserted between the
image encoder and mask decoder for training. Based on the MEA module, we
further design an iterative refinement scheme, which leverages segmentation re-
sults from the previous iterative stage to guide the refinement process of the
next iteration. Through iterative refinement, the segmentation masks can be
gradually improved, further boosting segmentation performances. We have the
following three key contributions:

(1) We introduce a novel Mask-Enhanced SAM (M-SAM) architecture to
explore the application of SAM in the medical domain, validating its effectiveness
in tumor lesion segmentation.

(2) We propose a Mask-Enhanced Adapter (MEA) to align the positional
information of the prompt with the semantic information of the input image,
optimizing precise guidance for mask prediction. Based on the design of the
MEA, we further implement an iterative refining scheme to refine masks, yielding
improved performances.

(3) With updates to only about 20% of the parameters, our model outper-
forms state-of-the-art medical image segmentation methods on five tumor le-
sion segmentation benchmarks. Additionally, we validate the effectiveness of our
method in domain transferring.

2 Method

2.1 Overall Review

The overall architecture of our M-SAM is illustrated in Fig. 1. M-SAM is built
upon the architecture of SAM-Med3D [22], which has been pre-trained on large-
scale medical image segmentation datasets to obtain general medical knowledge.
It is composed of a ViT-based 3D image encoder to extract 3D image embed-
dings, a 3D prompt encoder to extract prompt embeddings, and a lightweight
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Fig. 2. Module design of Mask-Enhanced Adapter. (a) Detailed architecture of Mask-
Enhanced Adapter. (b) Mutual Feature Enhancement Block.

3D mask decoder to predict segmentation results. As shown in Fig. 1, the inputs
are a 3D image (CT or MRI) I ∈ RC×H×W×Dp, where C represents the num-
ber of channels, H the height, W the width, and Dp the depth (determined by
the number of image modalities, e.g., the T1 and T2 modalities of MRI), and
a randomly-initialized point as the initial point prompt. We first process them
with SAM image encoder and SAM prompt encoder respectively, to obtain the
initial image embedding E0

I ∈ RNI×D and point embedding E0
P ∈ RNP×D. Here,

NI and NP denote the dimensions of the image and point embeddings, respec-
tively, and D represents the feature dimensionality. We also initialize a null mask
M ∈ RC×H×W×Dp consisting of all zeros and feed it into a mask encoder to ob-
tain the initial mask embedding E0

M ∈ RNI×D. Afterward, the image embedding
E0

I and mask embedding E0
M are fed into our Mask-Enhanced Adapter to obtain

the updated image embedding Ê0
I . By feeding Ê0

I and E0
P into the SAM mask

decoder, coarse segmentation mask M1 can be produced, which can also be used
to guide the update of image embeddings in MEA for the next stage of seg-
mentation refinement. The image embeddings are also updated in the iterative
process accordingly. Through multiple stages of iterative refinement, it is possi-
ble to improve the segmentation masks in a coarse-to-fine manner continuously,
thus boosting segmentation performance.

2.2 Mask-Enhanced Adapter

Our MEA is proposed to aggregate the image embedding with corresponding
mask, so that the updated image embedding can perceive position priors of the
lesion regions. The details of the MEA are presented in Fig. 2(a). For simplicity,
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we omit superscripts and used an iteration stage for explanation in this section.
Given the image embedding EI and the mask embedding EM as input, we first
feed them into a Mutural Feature Enhancement Block (MFEB) to aggregate
their features with each other. Concretely, as shown in Fig. 2(b), the MFEB
consists of two parallel 3D Transformer blocks, each with EI and EM as inputs.
Then, we modify the residual connections in the original Transformer block to
mutual residual connections, which facilitates their fusion. New image embedding
E′

I and E′
M with the same shape as the original ones are produced as the output

of MFEB. Afterwards, the original image and mask embeddings are added to
the new ones as residual connections, and the sum is normalized using layer
normalization. To incorporate the mask information into the image embedding
and make it aware of the foreground regions, the normalized embeddings E′′

I and
E′′

M are then transmitted into a multi-head attention layer for fusion as follows:

[Q,K, V ] = (E′′
I + E′′

M )WQKV (1)
ĒI = MHSA(Q,K, V ), (2)

where WQKV ∈ RD×3D are learnable parameters of linear projections, D rep-
resents the feature dimensionality and MHSA(·) represents Multi-Head Self-
Attention module. After adding E′′

I to ĒI and processing them with layer nor-
malization, we apply an MLP layer to the normalized embedding to obtain the
updated image embedding ÊI as the output of MEA.

2.3 Iterative Refinement

Based on the design of our MEA, it is possible to refine the predicted segmen-
tation masks iteratively, thus obtaining more accurate segmentation boundaries
progressively. As shown in Fig. 1, the M-SAM makes predictions in a coarse-to-
fine manner, beginning with the initial image embedding E0

I extracted by SAM
image encoder, point embedding E0

P extracted by the SAM prompt encoder,
and mask embedding E0

M derived from an all-zero mask. We use the superscript
to denote the stage number of iterative refinement in this section. The updated
image embedding Ê0

I is obtained by feeding E0
I and E0

M into MEA, and then fed
into SAM mask decoder with E0

P to produce the first coarse mask M0, which
is then used to generate the mask embedding E1

M for the next stage. Concur-
rently, the new image embedding E1

I is updated with Ê0
I and the new prompt

embedding E1
P is also generated based on the last segmentation mask, yielding

the refined segmentation results for the next stage. In this way, iterative refine-
ment is carried out continuously, resulting in increasingly accurate segmentation
results and the segmentation result of the last stage is taken as the final output.

Following SAM-Med3D [22], to simulate the clinical scenario of interactive
segmentation, one point per iteration is randomly sampled: from the foreground
in the 1st iteration, and from the error region between the coarse mask and
ground truth in the subsequent 9 iteration, totaling 10 points in 10 iterations.
The updated prompt embedding EP is thus generated by feeding the newly
sampled point into the prompt encoder at each iteration. This point sampling
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strategy is used for both training and inference in our experiments, while in real
clinical use, it operates interactively with physicians.

2.4 Loss Functions

The overall loss function is the combination of Dice Loss [1] and Cross-Entropy
Loss with coefficients w0 and w1, and it is formulated as follows:

LDiceCE = w0LCE + w1LDice, (3)

where

LDice = 1− 2

M

M∑
j=1

∑N
i=1 pijgij∑N

i=1 p
2
ij +

∑N
i=1 g

2
ij

, (4)

LCE = − 1

N

N∑
i=1

M∑
j=1

gij log(pij), (5)

where N represents the number of pixels, M is the number of classes, gij is a
binary indicator which is set to 1 if class j is the correct classification for pixel
i, and pij is the predicted probability that pixel i belongs to class j. w0 and w1

are both set as 0.5 in our experiments.

3 Experiments and Results

3.1 Experimental Setting

Implementation Details. We use the AdamW optimizer with an initial learn-
ing rate of 8e−4 and train for 200 epochs and the batch size was set to 4, with a
weight decay of 0.1. In our dataset transform process, we employ a crop-or-pad
strategy to standardize all images to a resolution of 128×128×128. This involves
zero-padding for images with any dimension falling short of 128 and applying
cropping for dimensions exceeding 128. As for the data augmentation, we use
RandomFlip along all three spatial axes and perform z-score normalization on
each medical image data. All the experiments are implemented in PyTorch and
trained on one NVIDIA Tesla V100 GPU.
Datasets and Evaluation Metrics. We employ seven distinct segmentation
tasks to comprehensively demonstrate the advantages of M-SAM. 1) Brain Tu-
mor Segmentation Challenge 2021 (BraTS21) [3], 2) Kidney Tumor Segmenta-
tion Challenge 2019 Dataset (KiTS19) [12], 3) Medical Segmentation Decathlon
Lung (MSD Lung) [2], 4) Medical Segmentation Decathlon Pancreas (MSD Pan-
creas) [2], 5) Liver Tumor Segmentation (LiTS) [4], 6) Medical Segmentation De-
cathlon Hepatic (MSD Hepatic) [2], 7) Lung100*. We adopt the Dice Similarity
Coefficient (DSC) and IoU as the evaluation metrics to compare the performance
of our method with other methods. More details of the datasets and evaluation
metrics can be found in our supplementary materials.
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Table 1. Comparison with U-Net-based methods and other SAM-based methods. All
methods underwent parameter updates on five datasets respectively. Bold data in-
dicate the highest DSC metric among all methods compared. Underline data indicate
the second highest.

Method Cat. Param(M) Tunable
Param(M) BraTS21 KiTS19 Lung Pancreas LiTS

TransUNet [6]

U
-N

et
-b

as
ed 96 96 89.62 80.75 75.21 76.30 86.50

UNETR [11] 104 104 89.65 84.10 73.29 73.65 81.48
SwinUNETR [11] 138 138 90.48 87.36 75.55 70.71 84.00

nnFormer [27] 151 151 90.42 89.09 77.95 78.65 89.83
nnU-Net [13] 16 16 91.23 89.88 74.31 76.52 87.97
Med-SA [24]

SA
M

-b
as

ed 636 13 90.50 87.19 73.26 76.47 83.67
SAM3D [5] 91.88 1.88 72.90 80.36 71.42 71.26 82.27

SAM-Med3D [22] 101 101 86.45 86.65 78.32 75.76 88.71
Ours 118 25 92.08 93.50 81.62 80.49 89.95

3.2 Main Result

Comparison with State-of-the-Art methods. As shown in the Table 1, our
method outperforms all other methods on the aforementioned datasets. Notably,
compared to the existing methods, our method achieves an average improvement
of approximately 2%. This demonstrates the effectiveness of our method across
multiple types of tumor lesion datasets. Additionally, it can be observed from the
table that U-Net-based methods tend to perform better on individual datasets.
However, the performance of such methods varies significantly across different
datasets. For example, SwinUNETR [10] achieves a Dice score of over 90% on
BraTS21, but only achieves a score of 70.7% on the Pancreas dataset, which
is nearly 10% lower than our method. For other SAM-based methods, the Dice
scores are generally lower than those of UNet-based methods. In terms of the
number of parameters, our model has fewer parameters than the average of the
methods shown in the table, and the tunable parameter count also ranks fourth
among these methods. These experimental results indicate that our method can
surpass these state-of-the-art methods with lower computational costs, effectively
leveraging the advantages of SAM in the field of tumor lesion segmentation.
Transfer Results between Different Datasets. To further validate our
method’s generalizability, we performed transfer experiments from source to tar-
get datasets without training on the latter. We compared our method against two
SAM-based and two UNet-based methods, as shown in Table 2. The comparison
involved transfers between both public datasets and a mix of public and private
datasets. Our method consistently surpassed the others, demonstrating minimal
performance degradation post-transfer—3.23% for public dataset transfers and
4.9% for transfers involving private datasets. In contrast, UNet-based methods
experienced over 10% degradation, underscoring SAM-based methods’ superior
domain adaptability. Furthermore, our method outperformed SAM-Med3D [22]
in both pre- and post-transfer accuracy, with a marginal reduction in perfor-
mance degradation—0.75% and 0.72%, respectively. This indicates our mod-
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Table 2. Transfer Results between datasets. ∆ represents the Dice scores difference
before and after the transfer. Rate denotes ∆ as a proportion of the pre-transfer scores.
* represents private dataset.

Source Target Method Before After ∆ Rate(%)

LiTS Tumor MSD Hepatic Tumor

U-Net [18] 61.54 50.77 -10.77 -17.50
UNETR [11] 62.19 51.82 -10.37 -16.67

SAM-Med3D [22] 77.64 75.29 -2.35 -3.03
Ours 81.97 79.58 -2.39 -2.92

MSD Hepatic Tumor LiTS Tumor

U-Net [18] 61.08 52.23 -8.85 -14.49
UNETR [11] 64.94 57.15 -7.79 -12.00

SAM-Med3D [22] 85.01 80.82 -4.19 -4.93
Ours 86.89 83.81 -3.08 -3.54

MSD Lung Lung100*

UNETR [11] 65.16 52.99 -12.17 -18.68
U-Net [18] 73.22 62.32 -10.9 -14.89

SAM-Med3D [22] 78.53 74.35 -4.18 -5.32
Ours 82.17 77.90 -4.27 -5.20

Lung100* MSD Lung

UNETR [11] 71.99 60.16 -11.83 -16.43
U-Net [18] 74.77 65.10 -9.67 -12.93

SAM-Med3D [22] 78.32 73.70 -4.62 -5.90
Ours 81.62 77.87 -3.75 -4.59

ule’s ability to enhance accuracy and maintain SAM’s generalization capabilities
across diverse datasets.

3.3 Ablation Study

Table 3. Ablation on training setting. * represents private dataset.

Setting Variants Tunable
Param(%)

KiTS19 BraTS2021 Lung100*
DSC IoU DSC IoU DSC IoU

baseline 0 73.28 57.82 83.30 71.38 10.07 5.30
w/o MEA 8.09 86.75 76.59 84.35 72.94 77.96 63.88

backbone full-ft 100 92.67 86.34 92.15 85.44 82.09 69.62
M-SAM(Ours) 21.41 92.58 86.19 92.08 85.32 82.17 69.74

We conduct ablation study on KiTS19, BraTS2021 and Lung100* datasets
to validate the effectiveness of our method. As illustrated in Table 3, after
fine-tuning with LoRA, our method requires updating only 21% of the param-
eters to achieve results nearly identical or even better than full-parameter fine-
tuning. This efficient fine-tuning approach significantly reduces the requirements
for computational resources. With the incorporation of our proposed Mask-
Enhanced Adapter module, Dice and IoU metrics on public datasets further
increase by over 3.5% and 6%, respectively. On our private Lung100* dataset,
the performance improvement reaches approximately 2.8% for Dice Score and
4% for IoU respectively.
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4 Conclusion

In this work, we introduce Mask-Enhanced SAM (M-SAM), a novel architec-
ture designed specifically for 3D tumor lesion segmentation. In M-SAM, the
Mask-Enhanced Adapter (MEA) enhances the semantic information of medi-
cal images by incorporating positional data from coarse segmentation masks,
which assists in generating more precise segmentation masks. Additionally, we
implement an iterative refinement scheme in M-SAM to progressively improve
segmentation mask quality, resulting in enhanced performance. Extensive exper-
iments on seven tumor lesion segmentation datasets demonstrate that M-SAM
outperforms existing state-of-the-art methods and robust generalization capa-
bilities of the proposed architecture.
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