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Abstract. The advent of telemedicine represents a transformative de-
velopment in leveraging technology to extend the reach of specialized
medical expertise to remote surgeries, a field where the immediacy of
expert guidance is paramount. However, the intricate dynamics of Op-
erating Room (OR) scene pose unique challenges for telemedicine, par-
ticularly in achieving high-fidelity, real-time scene reconstruction and
transmission amidst obstructions and bandwidth limitations. This paper
introduces TeleOR, a pioneering system designed to address these chal-
lenges through real-time OR scene reconstruction for Tele-intervention.
TeleOR distinguishes itself with three innovative approaches: dynamic
self-calibration, which leverages inherent scene features for calibration
without the need for preset markers, allowing for obstacle avoidance
and real-time camera adjustment; selective OR reconstruction, focusing
on dynamically changing scene segments to reduce reconstruction com-
plexity; and viewport-adaptive transmission, optimizing data transmis-
sion based on real-time client feedback to efficiently deliver high-quality
3D reconstructions within bandwidth constraints. Comprehensive exper-
iments on the 4D-OR surgical scene dataset demostrate the superiority
and applicability of TeleOR, illuminating the potential to revolutionize
tele-interventions by overcoming the spatial and technical barriers inher-
ent in remote surgical guidance.
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1 Introduction

The emergence of telemedicine marks a pivotal advancement in utilizing technol-
ogy to broaden the accessibility of specialized medical expertise [31,29,8]. This
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shift is crucial for providing timely expert guidance for remote surgery, especially
in scenarios where the distance from specialized professionals could delay vital
treatment. Telemedicine encompasses a broad range of disciplines, from social
and perceptual to behavioral and technical aspects of remote healthcare deliv-
ery. In surgical intervention scenarios, the deployment of telemedicine systems
necessitates a series of critical steps, including onsite scene reconstruction, trans-
mission, remote rendering, and intervention. A significant technical challenge in
telemedicine lies in achieving real-time reconstruction and transmission. This
necessity is more pronounced in the context of surgery, as it demands a greater
level of real-time responsiveness compared to other telemedicine applications,
i.e., ward monitoring or remote consultations.

Previous research has explored various methods by employing multiple static
RGB-D cameras to capture and enhance the reconstruction of 3D scenes. The
scenarios are often first modeled by separate point clouds from per-camera view-
points, which are then fused into a common reference frame using intrinsic and
extrinsic parameters [1,14]. To achieve higher fidelity reconstructions, some re-
searchers proposed and refined the use of neural implicit functions [9,17,26,28]
and generative models [10,18]. However, these methods traditionally relied on
designing sophisticated algorithms for robust visual feature extraction [10,30,32]
and multiview calibration [9,12], typically conducted in offline settings. On the
other hand, certain strategies have aimed to simplify these methods to en-
hance reconstruction efficiency. However, these simplifications tend to compro-
mise the accuracy of the reconstructions, making them only suitable for static
scenes [24,27] rather than dynamic surgical scene. Furthermore, these approaches [5]
may restrict the number of remote clients who can access the system, thereby
diminishing their applicability for tele-intervention in surgical settings.

The Operating Room (OR) presents a dynamic and complex scenario, teem-
ing with medical staff, patients, and an array of medical equipment, which poses
more challenges in scene understanding scenarios [22]. Unlike traditional static
settings where full-scene capturing is achieved by deploying camera arrays to sur-
round clear capture regions, OR often involves obstructions from large devices,
hanging monitors, and moving staff, leading to frequent occlusions of scene cap-
ture cameras. Furthermore, the balance between high-quality reconstruction and
efficient real-time transmission underscores the significant challenges in surgical
tele-intervention. To address these challenges, in this work, we propose TeleOR,
a real-time full-scene Operating Room scene reconstruction system for Tele-
intervention. TeleOR introduces innovative solutions critical for overcoming the
complex challenges of telemedicine in surgical scene. Its critical designs and in-
sights involve:

Dynamic Self-Calibration:We introduce an innovative dynamic self-calibration
approach for multiview cameras in OR scene. This technique leverages the OR
scene’s inherent features as reference points for calibration, eliminating the re-
liance on pre-set markers or physical calibration tools. Consequently, it enables
cameras to move and self-calibrate in real-time, effectively avoiding obstructions.
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Selective OR Reconstruction: Recognizing that specific sections of the OR
scene remain unchanged for extended durations, our TeleOR system concentrates
on identifying and reconstructing only the crucial, dynamic areas. This strategy
avoids the unnecessary reconstruction of static parts, thereby simplifying the
overall complexity of the reconstruction process.

Viewport-Adaptive Transmission: To address the limitations of network
bandwidth, particularly in underdeveloped regions, TeleOR incorporates a novel
viewport-adaptive transmission strategy. This technique capitalizes on real-time
feedback from the client, i.e., viewport information, to selectively transmit and
render only those segments of the scene that the user is likely to view, thus
ensuring the transmission of high-quality 3D reconstructions in real-time.

Our TeleOR undergoes comprehensive evaluation on 4D-OR dataset, focus-
ing on reconstruction quality and transmission efficiency under various network
constraints. The findings reveal that TeleOR achieves high-quality reconstruc-
tions and maintains real-time performance even in bandwidth-limited scenarios,
highlighting its effectiveness and reliability for tele-intervention applications.

2 Related Work

Operating Room (OR) Reconstruction. Holistic reconstruction and com-
prehension of ORmarks a pivotal advancement towards the evolution of computer-
assisted surgical interventions. The integration of sensing technologies within
the OR facilitates the identification of individuals, objects, and their interrela-
tions, serving as a foundation for the development of advanced surgical inter-
vention [9,26,7]. In this regard, Özsoy et al.[23] introduced the first public 4D
surgical scene dataset, 4D-OR. Gerats et al.[9] investigated the application of
Neural Radiance Fields (NeRF) [17] for dynamic scene reconstruction within
the OR, demonstrating depth-supervised regularization notably enhances image
fidelity. Additionally, Eck et al. [7] employed a marching cubes variant on point
clouds for OR surface reconstruction. Nevertheless, current approaches have yet
to achieve real-time remote surgical intervention, a critical capability for enabling
professionals to conduct remote surgical interventions.

Virtual Reality (VR) assisted Intervention. Current surgical interven-
tions [3,2,15,20,34,4,6] typically involve the reconstruction of lesions and organs
using VR systems and head-mounted displays, aiding physicians in executing on-
site procedures. Chong et al. [4] introduced a cutting-edge VR system capable
of tracking the laparoscope’s pose and reconstructing the 3D surface structure
of organs, thereby facilitating laparoscopic surgery. Similarly, Doughty et al. [6]
developed SurgeonAssist-Net, a framework designed for action-and-workflow-
driven virtual surgical assistance. However, a gap remains in real-time remote
interventions based on reconstructed OR scene, especially for underdeveloped
regions with limited network resources.
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3 Methodology

In Fig. 1, our proposed TeleOR systematically integrates multiview self-calibration,
selective OR reconstruction, and viewport-adaptive transmission to provide re-
mote professionals with real-time fully immersive tele-consulting capabilities.
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Fig. 1: TeleOR facilitates real-time observation of surgeries through: (1) self-
calibration of multiview cameras, (2) selective reconstruction of changing scene
segments, and (3) partial remote transmission tailored to the users’ predicted
viewport for the next time step.

3.1 Multiview Self-calibration

Different from traditional indoor reconstruction scenarios, real-time OR recon-
struction poses multiple challenges: (1) Obstructions of capture devices: Due to
frequent movements of medical staff and equipment during surgeries, capture
devices are often obstructed, impacting the calibration and synchronization of
the capture device array. (2) Restriction of pre-recording setups: OR is often
equipped with sophisticated instruments and monitors, which prevents the de-
ployment of physical calibration objects exploited by traditional methods. To
tackle the above challenges, different from traditional calibration methods [19]
that require pre-defined makers priors, we propose a dynamic self-calibration
strategy that directly exploits the features extracted in the OR scene as the
calibration reference.

In detail, RGB-D cameras are strategically positioned to ensure overlapping
fields of view (FoV), with one camera designated as the anchor. The coordi-
nate system of the anchor camera is set as the origin for the entire coordinate
system. Initially, the first frame from each camera is processed to extract ORB
features [16] for calibration. These features are then matched across adjacent
FoV to establish camera positions relative to each other. Subsequently, a trans-
formation matrix is derived to align the reconstructed scene with the reference
coordinate system through translational and rotational adjustments.

After the initial calibration, to prevent capture cameras from being ob-
structed, we mount the cameras on mobile platforms to enable their movement.
In this context, preserving calibration accuracy is crucial throughout the surgical
procedure due to shifts in the camera’s FoV. Therefore, we perform real-time
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updates of the camera positions. The optical flow method [21] is utilized to track
changes in camera pose by estimating the motion of feature points across frames,
allowing for effective camera movement tracking. Through continuous analysis of
optical flow vectors, we dynamically adjust the camera’s calibration parameters,
ensuring accurate and synchronized scene capture within the OR system.

3.2 Selective OR Reconstruction

A distinctive characteristic of the OR scene is that many objects re-
main static for the majority of the surgical process. Leveraging this ob-
servation, we propose to reuse already reconstructed content, focusing updates
only on the changing parts of the scene. To this end, we use an optical-flow-based
motion detection method to guide this selective reconstruction procedure.

Origin RGB-D 
Streams in 8x8 

channels

RGB-D Streams 
with some 

channels masked 
Complete OR Scene 

After Synthesis

Fig. 2: Selective OR Reconstruction Pipeline.

Optical Flow Calculation. As illustrated in Fig. 2, we divide the RGB-D
stream from each FoV into N × N channels, which produces N × N tiles per

frame, named Tt =
{
T 1
t , T

2
t , ..., T

N2

t

}
for tiles at time t. During the reconstruc-

tion process of each frame, the inter-frame disparity of each tile is examined,
by calculating the cumulative magnitude of the optical flow field difference Dc

with the previous tile at the same position. To reduce the computational cost
of pixel-wise optical flow difference, we exploit sparse optical flow calculation of
Lucas-Kanade alogrithm [33]. Specifically, we compute the frame-wise optical
flow difference based on two assumptions:

– Brightness Constancy Assumption: The brightness of a pixel does not
change as it moves from one frame to the next.

– Small Motion Assumption: The motion between frames is assumed to be
small, and the displacement vector is constant within the local neighborhood.

The calculation of optical flow vector (Uxy, Vxy) for point (x,y) between two
consecutive tiles Tn

t and Tn
t−1, can be attained by solving the following equation:[
Uxy

Vxy

]
=

[
Ex Exy

Exy Ey

]−1 [−Ext

−Eyt

]
, (1)
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where

Ex = T 2
x , Ey = T 2

y , Exy = Tx · Ty, Ext = Tx · Tt, Eyt = Ty · Tt, (2)

Tx(x, y) =
∂T

∂x

∣∣∣
(x,y)

, Ty(x, y) =
∂T

∂y

∣∣∣
(x,y)

, (3)

Tt(x, y) = Tt(x, y)− Tt−1(x, y). (4)

In this way, we can determine which tile has perceptible visual change given
an adjustable threshold according to available computational and transmission
bandwidth resources. The calculation of the cumulative magnitude of optical
flow difference can be represented as:

Dc =

Nwidth∑
x=1

NHeight∑
y=1

Mt(x, y), (5)

Mt(x, y) =
√
U2
xy + V 2

xy, (6)

where Dc is the cumulative magnitude of optical flow difference between tile Tn
t

and Tn
t+1, and Mt(x, y) is magnitude of the optical flow difference for point (x,y).

Tile-based Selective Reconstruction. For each tile, if Dc exceeds the set
threshold θ, indicating a perceptible visual difference, the corresponding position
in the RGB-D frame will be masked. The value of threshold θ is dynamically
determined by the real-time bandwidth. Then, these partially masked frames are
forwarded to the synthesis server for conversion into point clouds. Throughout
the point cloud generation process, for the masked tiles within each frame, the
corresponding sections of the scene are not regenerated. Instead, the previously
generated segments in the preceding frame are retained and reused.

3.3 Viewport-Adaptive Transmission

To transmit high-quality 3D reconstructions while overcoming limited bandwidth
networks, TeleOR capitalizes on real-time feedback from the client, i.e., viewport
information, to adaptively load data for transmission. Initially, we gather data
on the user’s past FoV movements to construct a historical trajectory. Utilizing
this data, following [11], an efficient LSTM network is employed to predict the
user’s FoV for the next time step.

This prediction enables the strategic synthesis of point clouds solely within
the predicted FoV, ensuring efficient utilization of bandwidth by transmitting
and rendering only the scene segments likely to be in the user’s view. In practice,
to ensure accurate predictions and prevent prediction failures, TeleOR employs
a prediction range of 120 degrees, expanding beyond the typical user’s viewing
frustum [13,25]. This approach not only covers a wider area for improved situa-
tional awareness but also strategically reduces the point cloud density from the
center of the predicted FoV to minimize data usage.
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(a). Adequate (b). Medium (c). Limited

Fig. 3: Visualization of reconstruction
results of different network conditions.

Net Condition Rreuse MSSIM

Limited (20Mbps) 85.8% 0.9012

Medium (50Mbps) 66.9% 0.9615

Adequate (100Mbps) 27.3% 0.9827

Table 1: Reconstruction quality assess-
ment of different network conditions.

In parallel, TeleOR considers the current network bandwidth to adjust the
dynamic threshold θ for selective OR scene reconstruction (Sec. 3.2) and the
reconstructed point cloud density for the next transmission. This approach allows
for the fine-tuning of data transmission, balancing the quality of the point cloud
stream against the imperative of maintaining real-time streaming capabilities
of the OR scene. Through this balance of predictive modeling and bandwidth
management, TeleOR ensures the delivery of essential, high-quality 3D content
under the constraints of varying network conditions.

4 Experiment

4.1 Experimental Setup

Datasets and Evalutaion Metrics. To evaluate the reconstruction qual-
ity and real-time performance of our proposed TeleOR system, we conduct the
evaluation on the public operating room dataset 4D-OR [23], which is com-
posed of 6734 scenes captured by six RGB-D Kinect sensors. The evaluation
focuses on two key aspects that have the most significant impact on the tele-
intervention performance: reconstruction quality (Sec. 4.2) and transmission ef-
ficiency (Sec. 4.3).

Implementations. We implement the TeleOR on top of Open3D. We deploy
the RGB-D sequences of each FoV on six individual edge computing devices
(Nvidia Jetson Nano), each connecting to the synthesis server (equipped with
Intel i7-12700 CPU, NVIDIA GeForce RTX 3090 GPU, 64G RAM) via a WiFi
connection. For the client-side renderer, we built a real-time player on top of
Unity and deployed it on a Meta Quest Pro head-mounted display. The supple-
mentary materials provide a detailed description of the rendering data format.

4.2 Reconstruction Quality

To accurately assess the visual quality of the reconstructed scene, we use the
Structural Similarity Index Metric (SSIM) for analyzing 2D renderings derived
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Table 2: Transmission performance under different network conditions.

Methods & Net Condition
Frames per Second Latency (ms)

Min. Avg. Max. Min. Avg. Max.

Limited (20Mbps) 15.6 22.7 24.3 297 302 357
Medium (50Mbps) 22.5 25.2 29.9 160 192 269
Adequate (100Mbps) 25.9 27.7 29.9 95 105 136

w/o. selective recon. (100Mbps) 3.2 5.7 6.7 132 153 275
w/o. viewport adapt. (100Mbps) 7.5 9.2 12.7 172 197 267

from the 3D scene. This analysis is carried out from a series of predefined view-
points, termed Multiview SSIM (MSSIM). MSSIM represents the average SSIM
value obtained across these multiple predefined viewpoints. Also, Scene Reuse
Ratio (Rreuse) is adopted to evaluate the effectiveness of utilizing previously re-
constructed scene elements in new reconstructions. We evaluate the reconstruc-
tion performance of our selective reconstruction approach under various network
constraints, with bandwidth limits set to 20, 50, and 100 Mbps. Therefore, our
established bandwidth testing range represents a stringent set of extreme condi-
tions. For one thing, in Tab. 1, it is observed that at a bandwidth of 20 Mbps, our
method achieves a Rreuse of 85.8%, indicating a substantial reuse of segments
reconstructed from previous frames. This effectively reduces the complexity of
the reconstruction process, ensuring the real-time performance of our ap-
proach. For another, Fig. 3 demonstrates that our TeleOR achieves high-quality
reconstructions at 100 Mbps, and maintains acceptable performance even under
severe bandwidth restrictions. This significantly ensures the visual quality of
real-time reconstruction in bandwidth-constrained environments.

4.3 Transmission Efficiency

The transmission efficiency is assessed through two metrics: Frames per Second
(FPS) and Latency, with FPS reflecting the smoothness of video playback and
Latency measuring the delay between an action and its visual feedback on the
screen. Evaluation is conducted on all ten groups of 4D-OR, with each containing
3000 sample frames for simulation, using the same network constraints as Sec.4.2.
As shown in Tab. 2, despite operating under severely constrained bandwidth
conditions, TeleOR is still capable of maintaining a frame rate of 22.7 FPS.

4.4 Ablation Study

To explore the effectiveness of TeleOR’s key designs, the selective reconstruction
(Sec. 3.2) and viewport adaptive (Sec. 3.3) strategy is removed, respectively.
In Tab. 2, without selective reconstruction or viewport adaptation, a noticeable
drop in FPS can be observed even under adequate network resources. This ob-
servation emphasizes the critical role of TeleOR’s core components, especially
under poor network conditions.
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5 Conclusion

In this paper, we introduced TeleOR, an advanced system designed for enhanc-
ing tele-intervention in OR through real-time, high-fidelity scene reconstructions.
By integrating dynamic self-calibration, selective reconstruction, and viewport-
adaptive transmission, it addresses issues like camera occlusions, scene com-
plexity, and bandwidth constraints, enhancing remote surgical guidance. Exper-
iments on the 4D-OR dataset indicate that our TeleOR not only achieves excep-
tional reconstruction accuracy but also superior transmission efficiency under
strict bandwidth limitations, enabling seamless real-time interventions.
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