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Abstract. Integrating dual-domain (i.e. frequency domain and spatial
domain) information for magnetic resonance imaging (MRI) reconstruc-
tion from undersampled measurements greatly improves imaging effi-
ciency. However, it is still a challenging task using the denoising diffu-
sion probabilistic models (DDPM)-based method, due to the lack of an
effective fusion module to integrate dual-domain information, and there
is no work exploring the effect that comes from denoising diffusion strat-
egy on dual-domain. In this study, we propose a novel center-to-edge
DDPM (C2E-DDPM) for fully-sampled MRI reconstruction from un-
dersampled measurements (i.e. undersampled k-space and undersampled
MR image) by improving the learning ability in the frequency domain
and cross-domain information attention. Different from previous work,
C2E-DDPM provides a C2E denoising diffusion strategy for facilitating
frequency domain learning and designs an attention-guided cross-domain
junction for integrating dual-domain information. Experiments indicated
that our proposed C2E-DDPM achieves state-of-the-art performances in
the dataset fastMRI (i.e. The scores of PSNR/SSIM of 33.26/88.43 for
4× acceleration and 31.67/81.94 for 8× acceleration).

Keywords: Denoising diffusion probabilistic models · Dual-domain ·
Undersampled · MRI Reconstruction.

1 Introduction

Integrating dual-domain information for MRI reconstruction is still challenging
and of great significance for clinical examination. Magnetic resonance imaging
(MRI), as a non-invasive imaging technique, is extensively utilized. However, a
drawback of MRI is that it causes discomfort for individuals due to the need to
lie still for extended periods in a cramped and confined space. Thus, with the aim
of reducing MR scanning time, reconstructing MR images from undersampled
measurements has a long and extensive history of research [18]. According to the
source image, the existing works of MRI reconstruction can be divided into two
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parts: single domain based (i.e. single frequency domain [21] or single spatial
domain [2,3]) and cascade dual domain based [20]. However, the single domain-
based method ignores the complementary prior information [22] and the cascade
dual domain-based method brings the accumulation error [6].

Although denoising diffusion probabilistic models (DDPM) [7] show superior
performance in reconstruction tasks, no work explores the effect of denoising dif-
fusion strategy on dual-domain medical images. DDPM has shown great power
in various synthesis tasks (e.g. image [4,13], audio [11], in-painting [12], and
super-resolution [16]). And some works have attempted to deploy the DDPM-
based method for MRI reconstruction from undersampled measurements [15,21].
However, few work explores the effect of denoising diffusion strategy on the fre-
quency domain and spatial domain. As shown in Fig.1.(a), existing works deploy
traditional denoising diffusion strategy [7] using global Gaussian noise to both
the frequency domain and spatial domain. For spatial domain, it has the advan-
tage of keeping the context anatomy features in the sampling steps because it
follows the spatial domain imaging characteristics. But for frequency domain,
using global Gaussian noise brings the risk of extra sampling steps. Besides,
frequency domain information is sensitive to noise (small reconstruction errors
in the frequency domain cause unpredictable influence in the spatial domain)
[6]. Thus, designing a tailored denoising diffusion strategy for frequence domain
learning following frequency imaging characteristics has great potential to im-
prove learning ability and speed up DDPM.

Designing a center-to-edge (C2E) denoising diffusion strategy following the
frequency characteristics for facilitating frequency domain processing. As shown
in Fig.1(b), the frequency domain shows incomprehensible information to human
vision [6] but there is no doubt that the signal is divergent from the center-
to-edge [14]. Specifically, the center stores high signal energy to represent the
low-frequency signal such as the global contour feature, and the edge stores low
signal energy to represent the high-frequency signal such as the detailed texture
feature. Recently, Bansal et al. [1] first indicated that the behavior of denoising
diffusion in DDPM exhibits a limited dependence on the choice of Gaussian noise,
and in fact, the DDPM can be constructed by using a different choice of noise.
Inspired by these works, the hypothesis of this work is to design a C2E denoising
diffusion strategy following the frequency characteristics of C2E for facilitating
frequency domain processing, which is shown in first stage of Fig.1(c).

In this paper, we propose a novel center-to-edge denoising diffusion proba-
bilistic models (C2E-DDPM) for fully-sampled MRI reconstruction from under-
sampled measurements (i.e. undersampled k-space and undersampled MR image)
by improving the learning ability in the frequency domain and cross-domain in-
formation attention. Our method differs from previous works [2,15,21,24] in two
key aspects: (1) the diffusion and sampling process is defined in dual-domain with
C2E denoising diffusion strategy rather than traditional denoising diffusion op-
eration in DDPM [7]; (2) using parallel optimization between frequency domain
(i.e. k-space) and spatial domain (i.e. MR image) rather than using single domain
information or simply concatenation. The main contributions can be summarized
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Fig. 1. Advantages of our proposed C2E-DDPM. From (a) to (c), they are disadvan-
tages of traditional DDPM for dual domain processing, center-to-edge imaging charac-
teristics of frequency domain, and overview of our proposed C2E-DDPM, respectively.

as: (1) We propose a novel C2E denoising diffusion strategy according to the fre-
quency domain characteristics, which facilitates DDPM training and reduces
the sampling steps for the dual-domain information denoising diffusion process.
(2) To effectively integrate dual-domain information, an attention-guided cross-
domain junction (Ag-Cd-J) is proposed to eliminate the accumulation of error
between dual domains. (3) Experiments on accelerated MRI reconstruction show
C2E-DDPM outperforms State-of-The-Art (SoTA) methods.

2 Method

The C2E-DDPM is implemented based on DDPM [7] for undersampled MRI
reconstruction. To ensure the generated MR images follow data consistency with
the undersampled measurements, extra conditional guidance is utilized on the
basis of DDPM [7]. In addition, a novel C2E denoising diffusion strategy is
proposed to facilitate the denoising diffusion process of DDPM by taking into
account the frequency domain characteristics. Finally, the Ag-Cd-J is designed
for dual-domain information integration. The algorithm process of C2E-DDPM
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is organized as follows: preliminary knowledge of DDPM in Sect.2; conditional
guidance by undersampled measurements in Sect.2.1; C2E denoising diffusion
strategy in Sect.2.2; Ag-Cd-J for dual domain integration in Sect.2.3.

Preliminaries: DDPM [7], as an unconditional generative method, denotes the
form of pθ(x0) :=

∫
pθ(x0:T )dx1:T , where x1, ...,xT represent latents with the

same dimensionality as the data x0 ∼ q(x0). It mainly contains the forward
diffusion process and the reverse process of denoising. For reverse process of
denoising (i.e. the joint distribution pθ(x0:T )), it can be defined as a Markov
chain with learned Gaussian transitions starting from p(xT ) = N (xT ;0, I):

pθ(xt−1|xt) := N (xt−1;µθ(xt, t), σ
2
t I), pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt) (1)

Where µθ is the estimated mean yielded by a neural network parameterized by
θ. For the forward diffusion process (i.e. the approximate posterior q(x1:T |x0)),
it is a Markov Chain that involves the gradual addition of Gaussian noise to
convert the data distribution to the noise distribution according to the variance
schedule β1, ..., βT :

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), q(xt|x0) = N (xt;
√
ᾱtx0, (1−ᾱt)I) (2)

where αt := 1− βt, ᾱt :=
∏t

s=1 αs, and σ2
t = 1−ᾱt−1

1−ᾱt
βt.

2.1 Conditional DDPM by undersampled measurements

In the traditional DDPM, the unconditional generation xt−1 at each step is ob-
tained by subtracting the predicted noise from the previous xt, which as defined
in [7]:

xt−1 =
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵθ(xt, t)) + σtz, z ∼ N (0, I) (3)

Where ϵθ is defined as a function approximator intended to predict ϵ from xt.
To perform the conditional generation in C2E-DDPM, the generation xt−1 at
each step is on the basis of x̂t, which mixes undersampled measurements XC,t

with xt.Thus, the xt−1 here can be defined as:

xt−1 =
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵθ(x̂t, t)) + σtz, z ∼ N (0, I) (4)

In this work, the conditional matrix of undersampled measurements XC ∈
{MKt,St} has two types according to the specific domain (i.e. undersampled
k-space matrix MKt in the frequency domain and undersampled MRI matrix St

in the spatial domain). So, the x̂t also has two types of calculation corresponding
to the frequency domain x̂t,k and spatial domain x̂t,s. For frequency domain:

x̂t,k = (1−M)xt,k +MKt, MKt = MK0 + F(N (0, (1− ᾱt)I)) (5)
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where M presents the undersampled mask image, F presents the Fourier Trans-
form, K0 presents the fully sampled k-space, and N (0, (1 − ᾱt)I) presents a
zero-mean noise for the simulation of diffusion condition in each step. For spa-
tial domain:

x̂t,s = xt,s + St, St = S0 +N (0, (1− ᾱt)I) (6)

where S0 presents the fully sampled MR image.

2.2 C2E denoising diffusion strategy

As shown in Fig.1, a novel C2E denoising diffusion strategy is proposed accord-
ing to the frequency domain characteristics. Specifically, for spatial domain,
to ensure the global context feature extraction in the whole MR image when
using U-Net [17] to achieve the diffusion process, it deploys the global denoising
diffusion strategy proposed in traditional DDPM [7]. For frequency domain,
according to the divergence from the C2E characteristics in k-space, the fre-
quency domain follows the low-to-high frequency denoising diffusion strategy by
using a circular Gaussian mask to remove pixels. First, we define a discretized 2D
Gaussian array of variance η, in which the spatial resolution is consistent with
the size of k-space n × n. Next, normalize the 2D Gaussian array so that the
peak of the array equals 1. And then, the circular Gaussian mask is achieved by
subtracting the result from 1 (i.e. the center of the mask equals 0). Finally, the
input fully sampled k-space K0 and conditional matrix MKt gradually masked
for T steps by using the circular Gaussian mask image zηi

with increasing ηi [1].
According to the work [1], the k-space image and conditional matrix in step t
that Kt and MKt can be calculated as:

Kt = K0 ⊗
t∏

i=1

zηi , MKt = MK0 ⊗
t∏

i=1

zηi (7)

where ⊗ presents entry-wise multiplication.

2.3 Ag-Cd-J for dual domain integration

As shown in Fig.1, after dual domain prediction of fully sampled k-space K̂0

and fully sampled MR image Ŝ0, an Ag-Cd-J is designed for dual domain inte-
gration. The cross-domain junction basically relies on the multi-head attention
layer proposed in work [19]. The work [19] utilized the multi-head attention layer
to improve the context feature extraction in a single input image. And the work
[8] proved the effectiveness of the multi-head attention layer for various inputs.
Inspired by these two works, our Ag-Cd-J designs a parallel attention path for
dual-domain interaction with cross-domain attention. Take the calculation of
the cross-attention in the spatial path as an example. After the Inverse Fourier
Transform of K̂0, the yielded matrix is fed into attention layer from the key and
value paths while Ŝ0 is fed into attention from query path. The cross-attention
in the frequency path utilizes a similar calculation except for feeding the In-
verse Fourier Transform of K̂0 from the query path and feeding Ŝ0 from key and
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Fig. 2. Visualized comparison of C2E-DDPM with other methods. (a) is reconstruction
results of 4× acceleration and (b) is reconstruction results of 8× acceleration. Error
map is obtained by making a difference between ground truth and reconstructed image.

value paths. The calculation of the multi-head attention layer in Ag-Cd-J can
be defined as:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (8)

where Q = WQ · Ŝ0, K = WK · K̂0, and V = WV · K̂0, and WQ, WK, and WV

are learnable projection matrices [8,19]. Finally, to eliminate the accumulation
of errors between dual domains via dual domain integration, the L2 loss function
is deployed to optimize the Ag-Cd-J. It captures the complementary information
and establishes coherent constraints between dual domains.

3 Experiment and Results

Dataset. The effectiveness of C2E-DDPM is validated in a large publicly avail-
able4 single-coil knee MR dataset fastMRI [23], which totally contains 1172 sub-
jects. In our experiment, 938 subjects are used for training and 234 subjects
are used for evaluation. The size of both k-space date and spatial domain MR
image data are 320 × 320 pixels. The undersampled masks image M are yielded
by using the mask function provided in fastMRI challenge [23] with 4× and 8×
accelerations.

Implementation Details. The noise schedule follows improved-DDPM [13],
and the U-Net [17] was used for the denoising model with 200 sampling steps in
4 https://fastmri.org.
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Table 1. The quantitative evaluation of the comparison between C2E-DDPM and
other methods. The criteria of PSNR & SSIM evaluated the performance of our C2E-
DDPM and other three other methods.

4× Acceleration
U-Net KIKI-net MC-DDPM C2E-DDPM

PSNR 30.81 31.04 31.68 33.26
SSIM 79.45 81.80 83.88 88.43

8× Acceleration
PSNR 28.15 29.34 29.77 31.67
SSIM 66.94 74.88 73.39 81.94

both the k-space domain and spatial domain. Inspired by Vaswani et al. [19], the
scaling factor dk was set to 64 in equation 8. The denoising process was trained
with an L1 loss function, and the Ag-Cd-J was trained with an L2 loss function
using a learning rate of 0.0001 and the Adam optimizer [9]. The C2E-DDPM
was implemented on an Ubuntu 20.04 platform using Pytorch and the CUDA
library, and was run on an RTX 3090Ti GPU.

Quantitative and Visual Evaluation. To verify the performance of C2E-
DDPM, we campared it with three methods: (1) a baseline model U-Net [17] in
[10]; (2) a SoTA method KIKI-net [5], which deploys CNNs to integrate the k-
space domain and spatial domain for reconstruction; (3) a DDPM-based method
measurement-conditioned denoising diffusion probabilistic model (MC-DDPM)
[21] for knee MRI reconstruction. The peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) were used for evaluation criteria. The visu-
alized results with 4× and 8× acceleration are shown in Fig.2. The comparison
shows that many detailed structures are lost in three compared methods (i.e.
where the red arrow points), but can be reconstructed by C2E-DDPM. The
quantitative results with 4× and 8× acceleration are shown in Table 1. Our
C2E-DDPM achieved the highest scores of PSNR and SSIM. Compared to the
MC-DDPM [21], our method outperforms by 1.58/4.55 for 4× acceleration and
1.9/7.95 for 8× acceleration in PSNR/SSIM. All these results proved the supe-
riority of our proposed C2E-DDPM.

Table 2. The quantitative evaluation of the ablation study. The criteria of PSNR &
SSIM evaluated the performance. Both the C2E denoising diffusion strategy and Ag-
Cd-J contribute to undersampled MRI reconstruction.

4× Acceleration 8× Acceleration
No C2ENo Ag-Cd-JC2E-DDPMNo C2ENo Ag-Cd-JC2E-DDPM

PSNR 32.18 32.30 33.26 30.14 30.31 31.67
SSIM 85.76 85.73 88.43 76.58 76.78 81.94
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Fig. 3. Ablation study of C2E for MRI reconstruction under different sampling steps.
The left is 4× acceleration and the right is 8× acceleration.

Ablation study. To prove the contributions of the C2E denoising diffusion
strategy and the cross-domain attention module Ag-Cd-J, we conducted the fol-
lowing two experimental comparisons: (1) For the C2E denoising diffusion strat-
egy, we removed the C2E frequency denoising diffusion strategy in the frequency
domain and used the global denoising diffusion strategy in DDPM [7] in both fre-
quency domain and spatial domain, which is named No C2E. (2) For Ag-Cd-J, we
replaced Ag-Cd-J with the operation of concatenation to integrate dual-domain,
and used a two-channel convolutional layer followed by the fully connected layer
for the final integration, which we named No Ag-Cd-J. The quantitative results
are shown in Table 2. For both 4× and 8× acceleration reconstruction, both
PSNR and SSIM values decreased when we removed either C2E or Ag-Cd-J. In
the 8× acceleration reconstruction, the values of PSNR and SSIM decreased the
most when removed C2E (i.e., PSNR decreased by 1.53 and SSIM decreased by
5.36). These results demonstrate that both the C2E denoising diffusion strategy
and Ag-Cd-J contribute to the undersampled MRI reconstruction.

Moreover, to verify the effect of C2E denoising diffusion strategy on the
learning ability and sampling steps of DDPM, Fig.3 shows the performance of
No C2E and C2E-DDPM under different sampling steps. For 4× and 8× ac-
celeration MRI reconstruction, compared to the No C2E method, C2E-DDPM
achieves higher PSNR values in fewer sampling steps. Specifically, the C2E-
DDPM appears to converge when around 200 steps, while No C2E converges
at around 400 steps. That means C2E denoising diffusion strategy reduces the
sampling steps of DDPM by half.

4 Conclusion

In this paper, we propose a novel approach called C2E-DDPM with cross-domain
attention for fully-sampled MRI reconstruction from undersampled measure-
ments. The novel C2E denoising diffusion strategy is designed based on the fre-
quency characteristics of center to edge, which enhances the learning ability in
the frequency domain and accelerates DDPM by reducing the required number
of sampling steps. This strategy provides an effective way for the DDPM-based
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method to process frequency domain information. The Ag-Cd-J module elimi-
nates the error accumulation between dual domains by utilizing the multi-head
attention layer to capture complementary information and establish coherent
constraints between dual domains. The experimental results indicate the supe-
riority of C2E-DDPM for knee MRI reconstruction, indicating its potential to
assist clinical decision-making. Future work includes exploring the contribution
of the C2E strategy to the single domain using different MRI datasets and im-
proving the inference speed of C2E-DDPM.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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