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Abstract. Dual-screen contrast-enhanced ultrasound (CEUS) has been
the first-line imaging techniques for the differential diagnosis of primary
liver cancer (PLC), since the imaging of tumor micro-circulation per-
fusion as well as anatomic features of B-mode ultrasound (BUS) view.
Although previous multi-view learning methods have shown their poten-
tial to boost diagnostic efficacy, correlation variances of different views
among subjects are largely underestimated, arising from the varying
imaging quality of different views and the presence of valuable findings
or not. In this paper, we propose a correlation-adaptive multi-view fusion
method (CAMVF) for dual-screen CEUS based PLC diagnosis. Towards
a reliable fusion of multi-view CEUS findings (i.e., BUS, CEUS and its
parametric imaging), our method dynamically assesses the correlation
of each view based on the prediction confidence itself and prediction
consistency among views. Specifically, we first obtain the confidence of
each view with evidence-based uncertainty estimation, then divide them
into credible and incredible views based on cross-view consistency, and
finally ensemble views with weights adaptive to their credibility. In this
retrospective study, we collected CEUS imaging from 238 liver cancer
patients in total, and our method achieves the superior diagnostic ac-
curacy and specificity of 88.33% and 92.48%, respectively, demonstrat-
ing its efficacy for PLC differential diagnosis. Our code is available at
https://github.com/shukangzh/CAMVF

Keywords: Multi-view fusion · Contrast-enhanced ultrasound · Liver
Cancer Diagnosis.

1 Introduction

Primary liver cancer (PLC) ranks as the fourth leading cause of cancer-related
death worldwide, posing a major threat to public health[17]. Hepatocellular car-
cinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the two major
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subtypes of PLC, which differ notably in genetic alteration, molecular patterns,
and treatment selection, etc[6]. Taking hepatectomy as example, ICC gener-
ally requires a larger surgical resection margin than that of HCC since ICC is
more aggressive[18]. Therefore, an accurate differential diagnosis of HCC and
ICC is important to therapeutic planning and improve patient prognosis. Dual-
screen contrast-enhanced ultrasound (CEUS) stands as the principle imaging
techniques for liver cancer differential diagnosis[5], where B-mode ultrasound
(BUS) and CEUS are displayed side by side. The two US views provide tu-
mor morphologic findings (i.e., shape, size, margin, echo, etc.) and microvascu-
lar perfusion characteristics, respectively. For CEUS view, diverse enhancement
patterns are associated with tumor pathological characteristics (i.e., microves-
sel distribution, tissue necrosis, and the degree of peripheral invasion, etc.)[12],
functioning as an important complementary imaging to conventional BUS in
clinics[4]. According to the arrival time of contrast agents, the whole liver per-
fusion examination is split into three phases, i.e., arterial phase, portal phase,
and delayed phase. In practice, radiologists generally observe contrast enhance-
ment patterns within different phases and perform a comprehensive evaluation
of tumor perfusion for disease diagnosis.

Recently, multi-view learning and attention-based temporal fusion methods
achieve state-of-the-art performances in CEUS analysis[9,8,7], which integrates
morphological features from BUS view and multi-phase perfusion features from
CEUS view for follow-up tasks. However, these methods largely underestimate
correlation variances of different views for each subject, susceptible to the noisy
or irrelevant views. On the one hand, there exist low-quality ultrasound images
corrupted by imaging noise or unpredictable liver motion. On the other hand,
there exist less-correlated views without presence of valuable perfusion char-
acteristics for PLC diagnosis. That is, the imaging quality and correlation may
vary for different views among patients due to uncertain factors, including acqui-
sition equipment, operator’s experiences, and patient disease progression stage,
etc. Traditional methods usually presume upon a stable view quality or impor-
tance for all samples, and assign equal or fixed weights for view fusion[3,15,7,8].
It is inapplicable to multi-view CEUS fusion for the high-risk liver cancer aided
diagnosis, and their frequently biased predictions result in a limited practical
deployment value.

In this paper, we propose a correlation-adaptive multi-view fusion method
(CAMVF) to assist PLC differential diagnosis using multi-view CEUS. To be
adaptive to dynamically changing CEUS view correlation, as shown in Fig 1,
our CAMVF method introduces Dempster-Shafer evidence theory (DST)[16] to
measure the uncertainty of each view. Compared with other metric of uncer-
tainty, DST theory models prediction uncertainty using beliefs from different
views obtained by replacing the Softmax operator with a non-negative activa-
tion (ReLU)[20]. For the application of liver cancer aided diagnosis, DST metric
of view uncertainty is significantly more feasible due to its substantially reduced
computational complexity. The term “correlation” in our CAMVF method
refers to the degree to which each view contributes to the final decision, de-
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Fig. 1. The framework of the proposed correlation-adaptive multi-view fusion
(CAMVF) method, which consists of evidence-based uncertainty estimation, split of
credible/incredible Views and reliable fusion with correlation assessment.

termined by the confidence of view itself and consistency among views simulta-
neously. The most relevant work to our CAMVF method is uncertainty-aware
trusted multi-view classification (TMC)[10,14] that combines view evidences
in terms of Dempster’s rule. But Dempster’s rule probably produce counter-
intuitive results when dealing with highly conflicting evidence[11]. Due to the
incremental combination procedure, the combined result may be biased by one
view that contradicts with the previous result with a high confidence, and the
overall uncertainty increases accordingly. To overcome this limitation, we pro-
pose to first divide all views into credible and incredible ones based on cross-view
semantic consistency, and then assess their correlation weights by the introduced
reward and penalty function, respectively. For the credible view supported by
others, the higher view confidence deserves a larger weight for view combina-
tion, while for the incredible view conflicting with others, the higher confidence
results in a lower fusion weight. In this way, we expect to construct a reliable
multi-view CEUS fusion mechanism against inter-view correlation variance for
PLC diagnosis.

2 Materials and Method

2.1 Datasets and Image Pre-Processing

In this study, we totally collected 238 dual-view CEUS cine-loops from patients
who attended Nanjing Drum Tower Hospital for liver cancer examination. 136
hepatocellular carcinoma (HCC) and 102 intrahepatic cholangiocarcinoma (ICC)
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cases were included. The size of lesion is 35.8cm2 and 43.32cm2 for HCC and
ICC, respectively. Pathologies of all cases were determined based on biopsy or
surgical specimens. All examinations were performed on a Logiq E9 ultrasound
scanner(GE Healthcare, Milwaukee, WI, USA) with a low mechanical index be-
low 0.15. For multi-view CEUS fusion model evaluation, we collected images from
five CEUS views for each subject, including the synchronous B-mode ultrasound
(BUS), 3 CEUS frames from different perfusion phases, as well as one parametric
image (PI) of contrast arrival time generated from Philips iU22 scanner.

To obtain the appropriate CEUS frames, we first perform liver motion com-
pensation by tracking liver tissues with feature descriptors (compact and real-
time descriptors, CARD), and then extract CEUS frames from the perfusion
peak point as well as the points at which perfusion intensity achieves the 50%
peak value both from wash-in and wash-out stages. The spatial resolution of
cropped US views are about 780×530. Considering the limited CEUS data, we
follow the guidelines of Image Biomarker Standardization Initiative (IBSI)[21]
for feature extraction. For BUS view, we extract 146-dimensional features, cov-
ering size, shape, orientation, margin, internal echoes, and posterior echoes, etc.
For CEUS view, we extract 152-dimensional features, including first-order and
high-order echo texture features, as well as differences of tumor regions and
their adjacent tissues. For PI view, we extract 49-dimensional statistic features
to describe the heterogeneous distribution of contrast initial arrival time.

2.2 Correlation-driven Multi-view Fusion

For high-stakes liver cancer diagnosis application, our focus extends beyond the
mere identification of disease type. It is imperative to interpret CEUS view fusion
decision process, including which views contribute most to the final decision
and the level of prediction confidence. To this end, we introduce evidence-based
uncertainty (EvU) estimation under the Dempster-Shafer evidence theory. With
uncertainty assessment, we expect to identify credible views for reliable multi-
view CEUS fusion.

Problem Formulation The overall architecture of the proposed correlation-
adaptive multi-view fusion (CAMVF) method is illustrated in Fig. 1. Given
multi-view CEUS data

{(
IUS
i , ICEUS

i , IPI
i

)
, yi

}N

i=1
, where IUS

i , ICEUS
i and IPI

i

denote BUS view, CEUS view and parametric view, respectively. Note that,
ICEUS
i contains three CEUS frames from different perfusion stages. The objective

of this method is to access the correlation of each view dynamically and fuse them
with adaptive weights, achieving a reliable fusion of views for liver cancer type
prediction yi.

Evidence-based Uncertainty Estimation (EvU) Formally, Dempster-Shafer
theory (DST) models the distribution of each set of class probability p with the
variational Dirichlet, parameterized with class-wise evidence collected from input
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view. For K-classification problem, Dirichlet distribution is formulated as:

D (p|α) =

{
1

B(α)Π
K
i=1p

αi−1
i p ∈ SK

0 otherwise
(1)

where αi is Dirichlet parameter of the i-th class. B (·) is the beta function, and
SK = {p|

∑
i pi = 1, 0 ≤ pi ≤ 1} is the K−1 dimensional unit simplex. In DST,

parameter αi is linked to the class evidence ei, αi = ei + 1, which represents
the degree of support for one subject diagnosed as the specific type of liver
cancer. Traditional classification model outputs a single point p in the simplex
SK , while DST quantifies the probability of each point. By probability integral,
DST enables to obtain the mean class probability p̂i and the overall confidence
of classification.

In our implementation, we replace the activation function of the last layer
with ReLU function and treat the negative output as class evidence e. The
uncertainty u and belief masses bi are derived in terms of subjective logic:

u =
K

S
, bi =

ei
S

(2)

where S is Dirichlet strength, S =
∑K

i=1 αi. Belief masses bi measures the sup-
port of i-th class and the K+1 masses sum to 1,

∑K
i=1 bi+u = 1. We can see that

the less total evidence collected indicates the higher uncertainty of prediction.
The mean class probability p̂i can be efficiently computed as p̂i =

αi

S .

Split of Credible/Incredible Views (SpV) In DST, pair-wise combination
process tends to believe the higher confident view even when they conflict with
other views, thus yielding counter-intuitive results. To address this issue, we
propose to split input views into credible and incredible views and assess their
correlation with the reward and penalty function, respectively.

Specifically, we first calculate the average distance of each view in rela-
tion to the others. For i-th view, its distance to j-th view is calculated by

the meaning class probability p̂i, dij =
√

1
2 (p̂i − p̂j)

T
(p̂i − p̂j). Its average

value di =
1

M−1

∑
j ̸=i dij measures the degree semantic consistency with other

views. The lower di means more support from the remaining views, while the
larger value indicates for a conflicting or unreliable view. To split the credible
and incredible views, we further calculate the semantic consistency threshold θ,
θ = 1

M

∑
i di, where M is the number of input views. When the average distance

di exceeds the threshold θ, the view is considered to be incredible, otherwise, it
is deemed to be credible.

Reliable Fusion with Correlation Assessment With the split of credi-
ble/incredible views, we introduce the reward and penalty function fr (fp) to
calculate the correlation weights wi in combination with the view uncertainty
ui. The two types of functions are defined as:

fr (Vi) = e−ūi , Vi ∈ Vcredible (3)
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fp (Vi) = e−(1+ūmax−ūi), Vi ∈ Vincredible (4)

where ūi is normalized uncertainty, ūi = ui/
∑

i ui. For the credible view, the
lower uncertainty score deserves a larger weight for evidence accumulation. Con-
versely, for the incredible view, the lower uncertainty results in a smaller weight.
Furthermore, we smooth the correlation weight wi as w′

i = ewi/η/
∑M

i=1 e
wi/η,

where η is temperature factor that adjusts the sensitivity to correlation variance.
Finally, we implement the reliable fusion at an evidence level, ef =

∑
i w

′
iei.

Based on ef , we could obtain the mean class probability p̂f and the overall
uncertainty of multi-view prediction uf .
Loss Function: Since the distribution of class probability p is modeled in DST,
classification loss Lcls is formulated as the integral of traditional cross-entropy
loss. Additionally, we add a prior constraint by Kullback-Leibler divergence Lkl

to enforce incorrect labels to be assigned with few evidence near to zero, L =
1
N

∑
i Lcls (αi) + Lkl (αi)

Lcls (αi) =

∫ [∑K

j=1
−yij log pij

]
1

B (αi)
ΠK

j=1p
αij−1
ij dpi

= yij (ϕ (Si)− ϕ (αij)) (5)

Lkl (αi) = KL [D (pi| α̃i)∥D (pi|1)]

= log

 Γ
(∑

j α̃ij

)
Γ (K)ΠK

j=1 (α̃ij)

+
∑

j
(α̃ij − 1)

[
ϕ (α̃ij)− ϕ

(∑
j
α̃ij

)]
(6)

where xin denotes the i-th CEUS view of n-th subject and yn is the true label
of liver cancer. ϕ (·) is the digamma function and Γ (·) is Gamma function. yij
is the j-th element of the onehot class vector yi. α̃i = yi + (1− yi) ⊙ αi is
adjusted parameter which avoids pushing Dirichlet parameter of true class to
1. Our method was trained with Adam optimizer (batchsize: 35, learning rate:
0.0003). The maximal number of training epoch is 1000 and the temperature
factor η is 0.99.

3 Experiments

Experimental Setup The whole dataset was split into the training and test-
ing set (ratio: 4:1) by preserving the class percentage. As random partition is
involved, we repeated the procedure for 10 times and reported the mean and stan-
dard derivation (std.) of testing results. Classification performance was evaluated
by classification accuracy (ACC), area under curve (AUC), specificity (SPE),
sensitivity (SEN), F1-score and Matthews correlation coefficient (MCC). HCC
is labeled as positive class. For each split, we conducted a 5-fold cross-validation
on the training set for hyper-parameters search.
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Table 1. Comparison of state-of-the-art methods. Results are presented in form of
[Mean±Std]%.

Method ACC AUC SPE SEN F1-score MCC

GCCA 76.67±6.50 72.29±8.84 88.94±8.06 57.65±17.51 64.94±13.36 51.00±12.92
KCCA 77.29±5.15 77.40±9.72 82.28±6.15 68.46±16.22 69.45±13.12 51.28±14.12
DCCA 80.63±3.68 83.81±5.08 85.71±6.71 74.15±8.44 75.17±5.17 60.25±7.27

TMC 86.67±3.70 86.90±3.63 90.12±3.94 81.70±7.53 83.08±3.90 72.25±6.93
ETMC 88.13±2.95 87.68±4.24 91.67±3.97 83.38±8.05 84.82±3.44 75.49±5.88
QMF 84.58±3.83 86.04±4.03 91.42±5.30 75.16±8.16 79.52±4.80 68.19±7.01

CAMVF(Ours) 88.13±3.68 88.24±4.67 92.55±4.94 81.42±6.26 84.57±4.49 75.17±7.44
ECAMVF(Ours) 88.33±1.76 88.29±3.14 92.48±3.39 82.95±6.59 84.99±1.69 75.94±2.97

The competing methods include Canonical Correlation Analysis (CCA) based
multi-view learning methods, i.e., Generalized CCA (GCCA)[1], Kernel CCA
(KCCA)[13], and Deep CCA (DCCA)[2], and the state-of-the-art trusted multi-
view classification (TMC) methods, i.e., TMC[10], enhanced TMC (ETMC)[10]
and Quality-aware multi-modality fusion (QMF))[19]. Among which, ETMC
was implemented by adding a mixed view that concatenated all view represen-
tations, aiming to complement view interaction at the feature level not limited to
the decision layer. Similarly, we also added the same mixed view to our CAMVF
method, i.e., enhanced CAMVF (ECAMVF). For a fair comparison, these com-
peting methods were implemented with the same backbone as our method for
view feature extraction.

Diagnostic Performance: From the Table 1, we have the following three ob-
servations. First, trusted multi-view learning methods (i.e., TMC, QMF, and our
CAMVF, etc.) achieve better classification results than various CCA variants,
with the ACC and AUC exceeding 84% and 86%, respectively. Among which,
our method CAMVF(ECAMVF) achieve the best performance with an ACC
of 88.13%(88.33%) and AUC of 88.24%(88.29%). This shows that, dynamically
assessing view correlation is effective to multi-view CEUS fusion for PLC di-
agnosis, and assigning all views with equal importance would lead to inferior
performance biased by the incredible views. Second, our CAMVF (ECAMVF)
method consistently outperform the TMC as well as its enhanced version ETMC
in terms of ACC, AUC and SPE, etc. The ETMC method slightly outperforms
our ECAMVF method with p-value > 0.8 in terms of SEN. It validates the su-
periority of credible/incredible view identification for the possible conflict view
combination against Dempster’s rule. Third, we find that the specificity scores
of various methods are significantly higher than the sensitivity scores, demon-
strating that HCC is easier to be falsely classified as ICC. It is perhaps due to
that the diversity of enhancement pattern of HCC is higher than that of ICC,
and enhancement patterns of HCC overlap with those of ICC partially.
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Table 2. Results of ablation experimentspresented in form of [Mean±Std]%.

Method EvU SpV Mixed view ACC AUC F1-score MCC

Ensemble-major - - - 82.29±6.75 82.48±6.08 74.75±7.46 64.18±12.09
Evi-mean ✓ - - 87.08±3.37 87.79±3.55 83.55±3.66 73.26±6.35
Evi-uncertainty ✓ - - 86.46±3.44 87.22±3.16 82.56±4.11 72.02±6.73

CAMVF(Ours) ✓ ✓ - 88.13±3.68 88.24±4.67 84.57±4.49 75.17±7.44
ECAMVF(Ours) ✓ ✓ ✓ 88.33±1.76 88.29±3.14 84.99±1.69 75.94±2.97

HCC ICC

0.25 0.10.15

Fig. 2. Visualization of CEUS view correlation for PLC differential diagnosis.

Ablation Experiments To evaluate the contributions of two major compo-
nents of our method (i.e., evidence-based uncertainty (EvU) and split of credi-
ble/incredible views (SpV)), we compare CAMVF with its three variants. The
first variant Ensemble-major removes the EvU and SpV modules and en-
sembles view predictions by the majority vote mechanism. The second variant
Evi-mean combines view evidence with the equal importance weight and the
third variant Evi-uncertainty assesses view importance weights with the un-
certainty score only without the split of credible/incredible views. Results are
presented in Table 2.

We could have at least three observations. First, our method consistently
yields better results than three variants. For example, the ACC and AUC scores
of three variants are both below 88%, and F1-score and MCC are below 84% and
74%, respectively. It validates the effectiveness of dynamic fusion with correlation
assessment for multi-view CEUS classification. Second, we find that combining
CEUS views at the evidence level (both for Evidence-mean and -uncertainty)
consistently outperform label-level ensemble method Ensemble-major, which im-
plies that fusing CEUS views at an evidence level is an indispensable step for
performance improvement. Additionally, it provides prediction confidence esti-
mation for high-stakes PLC diagnosis. Third, two evidence-based fusion method
achieve the limited performance with ACC of 86% and AUC of 87%. This demon-
strates that the split of credible/incredible view is important in case of conflict
views, and assigning a much smaller weight to incredible view could avoid their
wrong guidance.
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Visualization of View Correlation To display the learned view correlation
in a more intuitive manner, we plotted the color map of correlation matrix (Fig.
2). We can see that CEUS frames either in wash-in or wash-out stages with the
half peak intensity deserve the lower diagnostic correlation than other views.
And BUS and CEUS peak frames consistently have higher correlation than PI
and mixed view. In addition, we find that ICC cases show slightly higher view
correlation variances than that of HCC, i.e., less color changes across subjects. It
suggests that radiologists should pay more attention to identify valuable findings
across various views for ICC cases.

4 Conclusion

In this paper, we have proposed a correlation-adaptive multi-view fusion method
for dual-screen CEUS based liver cancer diagnosis. Experimental results have
demonstrated the effectiveness of our method in the identification of credible
view according to the varying correlation for PLC diagnosis, especially for dealing
with conflict views. As the future work, we will extend the current model with
a novel view evidence collection module that replaces the pure neural network
with a well-explained mechanism.
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