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Abstract. How do we transfer Vision Language Models (VLMs), pre-
trained in the source domain of conventional echocardiography (Echo),
to the target domain of few-shot portable Echo (fine-tuning)? Learning
image causality is crucial for few-shot learning in portable echocardiogra-
phy quality assessment (PEQA), due to the domain-invariant causal and
topological consistency. However, the lack of significant domain shifts
and well-labeled data in PEQA present challenges to get reliable mea-
surements of image causality. We investigate the challenging problem of
this task, i.e., learning a consistent representation of domain-invariant
causal semantic features. We propose a novel VLMs based PEQA net-
work, Causality-Adapting Visual Scoring CLIP (CausCLIP), embedding
causal diposition to measure image causality for domain-invariant rep-
resentation. Specifically, Causal-Aware Visual Adapter (CVA) identifies
hidden asymmetric causal relationships and learns interpretable domain-
invariant causal semantic consistency, thereby improving adaptability.
Visual-Consistency Contrastive Learning (VCL) focuses on the most dis-
criminative regions by registing visual-causal similarity, enhancing dis-
criminability. Multi-granular Image-Text Adaptive Constraints (MAC)
adaptively integrate task-specific semantic multi-granular information,
enhancing robustness in multi-task learning. Experimental results show
that CausCLIP outperforms state-of-the-art methods, achieving absolute
improvements of 4.1%, 9.5%, and 8.5% in view category, quality score,
and distortion metrics, respectively.

Keywords: Automated quality assessment · Causal learning · Pre-trained
visual language models · Portable echocardiography · Transfer learning.

1 Introduction

How do we transfer Vision Language Models (VLMs), pre-trained in the source
domain of conventional echocardiography (Echo), to the target domain of few-
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shot portable Echo (fine-tuning)? Learning image causality is crucial for few-
shot learning (FSL) in portable Echo quality assessment (PEQA). PEQA faces
challenges due to significant domain shifts and limited well-labeled data. Transfer
learning methods, represented by VLMs, becomes a natural choice. However, it
faces a key question: Can PEQA benefit from specific knowledge during the
transfer learning? Therefore, finding a causality-driven domain transfer method
is crucial for PEQA [8, 7, 13]. Once successful, it will bring great adaptability of
pre-trained networks, and robust transferring for downstream task [10].

Causal disposition [5] has significant potential in domain transfer, yet it still
faces challenges in the learning of image causality in PEQA. 1) Domain mis-
matches hinder the capture of causal consistency and the adaptation of out-of-
distribution data. In Echo imaging, especially with portable devices, images from
different vendors exhibit significantly distinct features. And domain shift from
natural to Echo images diminishes effectiveness of VLMs when applied directly.
Therefore, it is crucial to find an efficient method that bridges domain mis-
matches and possesses superior domain transfer capabilities for understanding
causal consistency in Echo. 2) Hidden visual-causal similarities, challenging to
articulate textually, frequently overlooked by VLMs. The deformable appearance
and poor spatial resolution of Echo make it difficult to identifying discrimina-
tive visual-causal features via common graphical attributes in VLMs. Especially
in FSL, the overlooked visual information often proves critical. 3) Weak cor-
respondence between causal visual-language distribution cannot be accurately

Fig. 1. How do we transfer Vision Language Models (VLMs), pre-trained in the con-
ventional echocardiography (Echo) source domain, to the portable Echo target domain
(fine-tuning)? Our CausCLIP achieves domain transfer by mastering domain invari-
ance, focusing on domain-invariant causal semantic consistency in portable Echo qual-
ity assessment (PEQA). Confounder C dictates the relationships among objects in
Echo-views but fails to identify key features, causing confusion in X → Y . M rep-
resents the Echo specific representation of C. CausCLIP eliminates C, clarifying the
causal path from X → Y .
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represented in multi-task learning (MTL), thereby hindering knowledge trans-
fer in FSL. VLMs struggle to grasp and depict the complex semantics of Echo.
Weak correspondences hinder generalization and sensitivity to task and feature
variations when capturing semantic consistency from limited labeled data during
domain transfer.

To sum up the above limitations, the mis-measurement for image causality
is the key challenge for FSL in PEQA, interfering the discovery of domain in-
variance. Cardiac anatomical structure invariance ensures topological semantic
consistency in Echo. Therefore, deriving and amplifying causality from the in-
teraction between statistical features and domain-invariant topological semantic
consistency enables the achievement of domain-invariant causal semantic consis-
tency, which is crucial for understanding image causality.

In this paper, we propose a novel Causality-Adapting Visual Scoring (Caus)
of contrastive language-image pre-training (CLIP) [9], aimed at enhancing PEQA.
It addresses the above limitations via three key innovations: 1) Causal-Aware
Visual Adapter (CVA) learns asymmetric causal relationships in weak causal
signals to adapt domain mismatches. By building on the extensive pre-trained
knowledge from CLIP, it learns interpretable and adaptable domain-invariant
causal consistency. 2) Visual-consistency contrastive learning (VCL) learns the
visual semantic registration for hidden visual-causal similarity. By extracting de-
tailed visual information relevant to PEQA, VCL concentrates on the most dis-
criminative regions. 3) Multi-granular Image-Text Adaptive Constraints (MAC)
adaptively learn the weak correspondence between causal semantic information
and text distribution, facilitating effective visual grouping in MTL. By provid-
ing multi-level textual information with multi-granular anchors, MAC enhances
the understanding of complex semantic information and improves the balance in
MTL, effectively utilizing auxiliary data.

Our contributions are summarized as follows: 1) For the first time, our
CausCLIP advances the learning of image causality in PEQA and promotes
domain-invariant causal semantic consistency, enhancing domain-invariant rep-
resentability in VLMs. 2) For the first time, our novel CVA integrates causal
learning into adaptive learning of VLMs, effectively addressing domain mis-
matches and thus improving adaptability. 3) Our novel VCL effectively reduces
the registration error of visual-causal similarity, improving discriminability. 4)
Our powerful MAC achieves collaborative optimization of multi-granular visual
grouping, enhancing the robustness of knowledge transfer.

2 Causality-Adapting Visual Scoring CLIP (CausCLIP)

Preliminaries Given a set of portable Echo E ∈ RH , image x ∼ E are randomly
sampled from Q. The goal of CausClip ν : RH → RQ is to predict the quality
of x, aiming for it to approximate the quality assessment result Y ∈ RQ. We
use conventional Echo to construct source domain dataset S ∈ RS and fine-tune
the CLIP model. We develop prompts for PEQA based on three key dimensions:
classification of Echo views, assessment of quality scores, and identification of
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Fig. 2. The framework of our CausCLIP. Our CausCLIP learns the domain-invariant
causal semantic consistency in PEQA, thus driving the learning of image causality via
the gradient in backpropagation.

ultrasound distortion. We consider echocardiographic 7-views: c ∈ C = {’PLAX’,
’A2C’, ’A3C’, ’A4C’, ’A5C’, PSAX-PM’, ’PSAX-AV’}. We selected 7 views from
conventional Echo to compose the benchmark set B ∈ RB . We also work with
five quality levels: q ∈ Q = {’excellent’, ’good’, ’fair’, ’poor’, ’bad’}. An Echo
may exhibit multiple types of quality distortions, we focus on on identifying
the predominant ones: d ∈ D = {’depth-gain’, ’chamber clarity’, ’zoom’, ’off-
set’, ’chamber integrity’,’other’}. The ‘others’ category includes images with no
distortions. The ultimate prompt integrates the aforementioned three specified
metrics: a photo of a(n) cardiac ultrasound {c} view with deficiencies in {d},
demonstrating {q} image quality. For example: a photo of a cardiac ultrasound
PLAX view with deficiencies in offset, demonstrating bad image quality.

Causal disposition formulation: By counting the number C(A,B) of im-
ages in which the causal dispositions of artifacts A and B is such that B disap-
pears if one removes A, one can assume that the artifact A causes the presence
of artifact B when C(A,B) is greater than the converse C(B,A) [1, 12]. We
can infer that any causal disposition leads to asymmetric causal relationships
among features, representing weak causality signals about images. The inter-
action between causality and domain-invariant topological consistency enables
generalization to new distributions.

Causal-aware visual adapter (CVA) The CVA adaptively reveals hidden
asymmetric causal relationships to learn interpretable causal features from vi-
sual (xf ) and textual (xt) features. Subsequently, CVA utilizes the causal-aware
module M to concentrate on weak causal signals in xf , identifying asymmet-
ric causal relationships and adaptively weighting features. The ReLU operations
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guarantees the feature maps F contain only non-negative numbers and normal-
ize these numbers to the interval [0, 1] by dividing of each them to the maximal
possible value MAX(F ). Subsequently, F is fed into a process that computes
pairwise conditional probabilities, we get k features F 1, F 2, . . . , F k represented
by n× n feature maps and generates k × k causality map, thereby representing
the probability of a feature appearing at a specific location. Specifically, for a
pair of features maps F i and F j , we connect the conditional probability with the

joint probability P
(
F i | F j

)
=

P(F i,F j)
P (F j) . And, we apply the generalized aver-

age function (Lehmer means) to estimate the conditional probabilities between
features pairs:

P
(
F i | F j

)
α
=

LMα

(
F i × F j

)
LMα (F j)

(1)

where F i × F j =
{
F i
11 · F

j
11, F

i
11 · F

j
12, . . . , F

i
11 · F j

nn, . . . , F
i
nn · F j

nn

}
is the vec-

tor of pairwise multiplications between two n × n feature maps. LMα is the
Lehmer means with trainable parameter α, which can produce values span-
ning from the minimum to the maximum, across a simple average among the
operands of a vector LMα(x) =

∑n
k=1 xα+1

k∑n
k=1 xα

k
. Formular 1 could be used to es-

timate asymmetric causal relationships between F i and F j , where typically,
P
(
F i | F j

)
̸= P

(
F j | F i

)
. By estimating pairwise causal relationships between

quantities for every pair i and j of the k feature maps, we obtain the k×k causal-
ity map. Causality maps are flattened and concatenated with flattened feature
maps, enabling the adapter to learn their impact on PEQA. To prevent infor-
mation loss, the adapter employs the adaptive residual connection to integrate
causal features with the original visual features xv.

xa = λM (xv) + (1− λ)xv (2)

where xa is the adapted features and λ is the weighting parameter.
Summary advantage: Our CVA proposes a novel causal representation

framework with high adaptability and causal preservation ability. It models the
weak causal signals and utilizes asymmetric causal relationship for cross-domain
alignment. Therefore, it has effectively improved the domain-invariant causal
consistency with the limitation of domain mismatches.

Visual-consistency contrastive learning (VCL) To uncover hidden visual-
causal similarities, we utilize VCL to register the causal-adapted feature xa, en-
suring it retains more discriminative information from visual-semantic features.
Constructing vision prompts enables the model to precisely comprehend com-
plex visual-semantic relationships that are challenging to articulate textually.
To maximize the cosine similarity between xa and the positive vision prompt
and minimize it between xa and the negative vision prompt, we formulate the
visual-consistency contrastive loss:
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LV CL = − 1

N

N∑
i=1

log
exp (sim (xa, x

+
v ) /τ)

exp
(
sim

(
xa, x

(j)
v

)
/τ

) (3)

where N is the number of samples in the batch. x+
v is the embedding of the

positive vision prompt and x
(j)
v represents the negative ones. sim(·) denotes the

cosine similarity between two embeddings. τ is a temperature scaling parameter.
Summary advantage: Our VCL proposes a novel registration framework

with high discriminability. It utilized the the visual semantic registration and
densely samples their visual correlation. Therefore, it has effective improve the
visual-causal similarity.

Multi-granular image-text adaptive constraints (MAC) To enhance the
correspondence between causal semantic information and text distribution in
MTL, MAC sets multi-granular anchors from the original prompt based on
three key metrics - category, quality, and distortion - and creates additional text
prompts while dynamically adjusting weights in the multi-granular loss function.
The choice of multi-granularity aims to enable as precise an image-text corre-
spondence as possible for the specified task. In addition to the original prompt,
we apply multi-granular contrastive losses among the additional prompts, such
as L(cd)

ap , L(cq)
ap , and L(og)

ap , and employ uncertainty weighting [4] to adaptively
adjust the weights for each prompt, ensuring alignment with causality:

LMAC =
∑ 1

σ2
⊙L+ logΠσ (4)

where L =
[
L(cd)
ap ,L(cq)

ap ,L(og)
ap

]
is loss vectors, σ = [σcd, σcs, σcd] is uncertainty

weight vector, ⊙ represents the element-wise multiplication of vectors, Π repre-
sents the product of vector elements.

Summary advantage: Our MAC proposes a novel registration-based text
generation program with higher diversity. It utilizes the multi-granular anchor to
precisely align task features with specific multi-level text. Therefore, it enhances
the robustness of PEQA.

3 Experiments

Data Collection We collect a dataset (P-Echo) comprising 5146 portable
echocardiographic images across 7-views for few-shot learning: parasternal long-
axis (PLAX), apical two-chamber (A2C), three-chamber (A3C), four-chamber
(A4C), five-chamber (A5C), papillary muscle level (PSAX-PM), and paraster-
nal short-axis at the aortic valve level (PSAX-AV). P-Echo comprises completely
anonymized data from three community health check-ups, with the dataset split
into 350 images for few-shot training and 4796 images for testing.And we utilized
a dataset comprising 16,572 conventional echocardiography images (C-Echo) of
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Table 1. The quantitative evaluation demonstrates the superiority of our CausCLIP.
Our CausCLIP achieves the highest performance in PEQA.

Model PLCC SRCC KRCC ACCview ACCquality ACCdists

KonCept 0.727±0.051 0.719±0.029 0.701±0.027 − 0.623±0.063 −
HyperlQA 0.835±0.007 0.829±0.003 0.820±0.024 − 0.716±0.012 −

TRIQ 0.822±0.017 0.821±0.033 0.785±0.016 0.866±0.016 0.707±0.021 0.607±0.038

IQT 0.831±0.040 0.827±0.039 0.816±0.025 0.879±0.027 0.739±0.069 0.632±0.059

MEON 0.867±0.024 0.869±0.013 0.833±0.010 0.887±0.009 0.763±0.037 0.675±0.036

LIQE 0.907±0.003 0.905±0.002 0.877±0.003 0.916±0.015 0.791±0.029 0.752±0.022

CausCLIP 0.921±0.020 0.922±0.007 0.893±0.015 0.957±0.011 0.886±0.033 0.837±0.027

varying quality during the CLIP fine-tuning stage, gathered from routine ultra-
sound examinations at two hospitals. The above datasets show significant style
differences and have been annotated by two expert sonographers.

Experimental Settings We employ the pre-trained CLIP (ViT-B/32) for im-
age and text encoding, implemented in Pytorch on an NVIDIA GeForce RTX
3080. The model is pre-trained on the C-Echo dataset for 100 epochs with a
mini-batch size of 4. For the training stage, we employ the Adam optimizer with
a base learning rate of 5 × 10−6, set the weight decay to 0.005, and use five-
fold cross-validation. In the assessment, we utilize the Pearson Linear Correla-
tion Coefficient (PLCC), Spearman Rank-Order Correlation Coefficient (SRCC),
Kendall Rank-Order Correlation Coefficient (KRCC), and Accuracy (ACC).

Comparison with state-of-the art We compare CausCLIP with KonCept
[3], HyperIQA [11], TRIQ [14], IQT [2], MEON [6], and LIQE [15], using pub-
licly available implementations. Competing models are retrained on our datasets
using the training codes provided by their respective authors. In the TRIQ
and IQT, we added [CLASS] token and [DIST] token to their transformer ar-
chitectures for MTL analysis. Compared to other quality assessment models,
CausCLIP shows superior performance in three key aspects (Table 1): 1) Effi-
cient transfer of image domain invariance. CausCLIP achieved superior perfor-
mance in all experiments, surpassing the next best method, LIQE, with average
accuracy improvements of 4.1%, 9.5%, and 8.5% in view categories, quality, and
distortion metrics, respectively. This success is due to its capability to learn
image causality, enhancing domain-invariant causal semantic consistency. 2) Ef-
fective transfer of causal relationships. Qualitatively, we generated Grad-CAM
heatmaps to highlight regions significantly influencing the results. The heatmaps
reveal distinct patterns between the base CLIP and CausCLIP (Figure 3). The
former primarily focuses on smaller central areas of the chamber structures,
whereas the CausCLIP encompasses a broader A4C structure, covering both in-
terior and edge tissues of the chambers. This demonstrates that CausCLIP excels
in locating key areas, offering more interpretable features for decision-making.
3) Superiority in auxiliary knowledge of VLMs. In all experiments, VLM-based
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Fig. 3. Impact of causality on the echocardiography. From left to right, the columns
represent the input test images, the Grad-CAM activations for the base CLIP (not
causality-adaption), the Grad-CAM activations for CausCLIP. The yellow part is the
description of the input test images.

Table 2. Ablation results on CausCLIP variants demonstrate the great contributions
of our innovation. We evaluate the zero-shot and few-show performance simultaneously.

CVA VCL MAC ACCview ACCquality ACCdists

Zero-shot √ √ √
0.899±0.023 0.734±0.016 0.693±0.039

Few-shot
0.927±0.036 0.816±0.005 0.764±0.017√
0.946±0.012 0.863±0.007 0.787±0.009

√ √
0.952±0.010 0.859±0.023 0.792±0.013

√ √
0.950±0.006 0.869±0.011 0.812±0.021

models showed significantly superior performance, with CausCLIP achieving an
average precision increase of at least 12.3% compared to other quality assessment
methods. This superior performance is attributed to VLM-based methods en-
hancing the network’s generalization ability through pre-trained auxiliary knowl-
edge. The improvements in PLCC, SRCC, and KRCC metrics further confirm
VLMs’ capability to learn superior auxiliary knowledge from visual-language
correspondences.

Ablation study The ablation studies on CausCLIP variants demonstrate the
great improvement of our innovations (Tabel 2). We explore the impact of the
number of training samples on CausCLIP’s generalization performance. Without
portable Echo samples in the training process (zero-shot), we observe a decline
in all three accuracy metrics. Additionally, we examined the impact of indi-
vidual components within CausCLIP. The results indicate that removing any
component leads to decreased performance and reduced generalization ability.
Significantly, the causal module demonstrates heightened sensitivity to quality
accuracy, attributable to its ability to focus on more discriminative features.

4 Conclusion

In this paper, we advance image causality learning for FSL in PEQA and in-
troduce Causality-Adapting Visual Scoring CLIP (CausCLIP). This approach
significantly enhances the representation of image causality, achieving power-
ful domain-invariant representation for domain-invariant causal semantic con-
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sistency. The proposed CVA learns asymmetric causal relationships, thereby
enhancing domain-invariant causal consistency with adaptability. Our VCL en-
hances visual-causal similarity, improving the visual semantic discriminability.
Our MAC constrains multi-granular causal visual-text information, thereby en-
hancing robustness. Extensive experiments achieving state-of-the-art results on
the MTL task showcase the powerful performance of our CausCLIP in few-shot
quality assessment. We believe CausCLIP will advance the field of causal learning
in medical image analysis.
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