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Abstract. Echocardiography (ECHO) is commonly used to assist in the
diagnosis of cardiovascular diseases (CVDs). However, manually conduct-
ing standardized ECHO view acquisitions by manipulating the probe
demands significant experience and training for sonographers. In this
work, we propose a visual navigation system for cardiac ultrasound view
planning, designed to assist novice sonographers in accurately obtaining
the required views for CVDs diagnosis. The system introduces a view-
agnostic feature extractor to explore the spatial relationships between
source frame views, learning the relative rotations among different frames
for network regression, thereby facilitating transfer learning to improve
the accuracy and robustness of identifying specific target planes. Addi-
tionally, we present a target consistency loss to ensure that frames within
the same scan regress to the same target plane. The experimental re-
sults demonstrate that the average error in the apical four-chamber view
(A4C) can be reduced to 7.055 degrees. Moreover, results from practical
clinical validation indicate that, with the guidance of the visual naviga-
tion system, the average time for acquiring A4C view can be reduced by
at least 3.86 times, which is instructive for the clinical practice of novice
sonographers.

Keywords: Echocardiography · Visual navigation · Cardiac Ultrasound
View Planning.
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1 Introduction

Echocardiography is commonly used for diagnosing cardiovascular diseases (CVDs)
owing to its real-time imaging, non-invasive nature, low cost, and convenience.
[2, 4] However, the acquisition of standard views for CVDs diagnosis requires
sonographers to establish the spatial correspondence between the dynamic three-
dimensional structure of the heart and the two-dimensional ultrasound images
within a limited examination time and acoustic window. This is a challenging
task for novice sonographers. Therefore, automatic visual navigation for cardiac
ultrasound view planning is high demand.

With the rapid development of deep learning, an abundance of studies on
echocardiographic images have recently been conducted to optimize the scanning
process, obtain the standard view and disease diagnosis. For instance, Narang et
al. [9] utilized deep learning algorithm to assist nurses with no prior ultrasound
experience in successfully capturing 10 echocardiographic views of diagnostic
value. Wu et al. [14] introduced a knowledge distillation network to automat-
ically and effectively identify 23 standard echocardiographic views commonly
used in diagnosing congenital heart disease in children and achieved a good
recognition effect. Grant et al. [3] employed spatiotemporal convolutions to con-
duct semantic segmentation of adult hearts and further categorized subtypes of
CVDs. Hence, deep learning techniques have been proven to be highly effective in
analyzing echocardiograms. However, the current analysis of cardiac ultrasound
images fails to address the issue of visual navigation as it does not integrate posi-
tioning information. Acquiring positional information during cardiac ultrasound
scanning faces two main challenges. First, significant individual differences make
it difficult to establish a unified coordinate system for humans, leading to dif-
ficulties in obtaining positions. Second, because the heart is a dynamic organ,
even minor variations in probe movement result in significant changes in the
ultrasound imaging, making precise position capture difficult. This presents dif-
ficulties in achieving real-time synchronization between the cardiac ultrasound
video and the data tracking probe movement.

In this work, we propose a human-based visual navigation system tailored for
cardiac view planning. We first train a view-agnostic feature extractor to achieve
features related to the three-dimensional structure of the heart from ultrasound
frames and perform transfer learning for regression tasks across different views.
Then, we introduce a new loss function to maintain consistency of the regression
target views within the same video, where the target plane positions regressed
from any two frames within the same scan should be identical. The main con-
tribution of our work can be summarized as follows:
– We have designed a fully automated visual navigation system to guide probe

movement for novice cardiac sonographers. To our knowledge, this is the first
visual navigation for cardiac ultrasound view planning that can be used in
real-world clinical scenarios on human body instead of phantom as used in
previous studies.

– We proposed a view-agnostic feature extractor to explore the spatial rela-
tionships between abitrary frames from the same video, thereby enhancing
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the accuracy and robustness of identifying various plane tasks. Furthermore,
there is no need to retrain the feature extraction process from the beginning
when introducing new planes that require navigation.

– We trained and validated our proposed framework with 3540 and 392 real
human cardiac ultrasound scans, respectively. The experiments prove that it
can effectively provide real clinical visual navigation for cardiac ultrasound
view planning.

1.1 Related Works

Recently, there have been several attempts at visual navigation of echocardiogra-
phy, which can be roughly divided into human-based and phantom-based meth-
ods. For human-based methods, Li et al. [6] introduced a reinforcement learning
method for spine ultrasound standard view navigation, and achieved task success
rates of 92% and 46% in intra-patient and inter-patient environments, respec-
tively. Another work involved a dual-agent framework that combines reinforce-
ment learning and deep learning to simulate the decision-making process of ex-
pert ultrasound physicians [7]. This framework autonomously acquires standard
views during spinal ultrasound examinations and achieves an average navigation
accuracy of 17.49° for inter-patient standard views in a simulated dataset col-
lected from 17 volunteers. Yeung et al. [15] implemented a two-stage pre-training
and fine-tuning network, which enabled a ultrasound navigation system based
on fetal brain. The system achieved an effect where the euclidean distance could
reach 23±9.01 voxels. For phantom-based methods, Zhao et al. [16] introduced a
landmark retrieval-based ultrasound-probe movement guidance system utilizing
data from the ScanTrainer Simulator to simulate the scanning process of obstet-
ric ultrasound. Olivier et al. [10] utilized recurrent neural networks and visual
attention to achieve probe movement guidance for acquiring standard views of
apical four-chamber and parasternal long-axis in echocardiography. The error
range for the x-axis lies between 4° and 15°, whereas for both the y-axis and
z-axis, it is between 3° and 15°. All the above navigation methods have several
limitations. Methods based on real human data are mostly focused on "static"
organs such as the brain and spine. For dynamic organs like the heart, existing
research relies on phantoms or simulators. However, the heart is a highly variable
and dynamic organ with complex motion patterns that cannot be effectively sim-
ulated using static phantoms or simulators. It is difficult to replicate real move-
ments and images, making clinical application challenging. To our knowledge,
this is the first visual ultrasound navigation work on real human hearts.

2 Methods

2.1 Problem Setup

With a collection of N clinical scans, we obtain a series of the videos denoted
as {Sv}Nv=1. Each video, Sv, comprises L frames, along with their corresponding
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Fig. 1. Framework of the proposed network for real-world visual navigation. Stage 1:
Train a view-agnostic feature extractor via regressing the rotation matrix of paired
frames’ positions within a video. Stage 2: Utilize the trained feature extractor to train
the rotation matrix of the probe movement to the standard view via MSE loss and the
proposed target consistency loss.

probe positions, represented by the set {(xvi, pvi)}Li=1. Here, pvi signifies the
absolute rotation matrix relative to the standard position of the tracking system.

Visual navigation. Given an arbitrary input frame xvi, the goal of visual
navigation is to predict the probe rotation R̂vit from the current probe position
pvi to the probe position pvt of the anatomical standard plane, such as apical
four-chamber view (A4C) and apical two-chamber view(A2C). The ground truth
of the probe motion is calculated as:

Rvit = p−1
vi pvt, (1)

where Rvit is the rotation matrix for the probe motion from the ith frame to the
target anatomical standard frame in video Sv.

To address the task of visual navigation, we propose a two-stage framework
as illustrated in Figure 1. Initially, we train a view-agnostic feature extractor
E and a rotation predictor P to compute the relative rotation matrix between
probe positions of two frames in a single video. Subsequently, leveraging this
learned feature extractor, we train a guidance module G to predict the probe’s
rotation relative to the standard plane.

2.2 View-agnostic Feature Extractor

We can directly regress the probe’s rotation matrix towards the target anatomi-
cal standard plane to accomplish the visual navigation task. However, by directly
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conducting a regression model, the extracted features will be solely related to
the target plane, ignoring the common features shared among different views.
Re-training is required with every new target plane, wasting resources and mak-
ing it less suitable for medical applications. Furthermore, the direct regression
approach also fails to address the acquisition errors present in clinical scans col-
lected by different physicians and the standard plane selections since the stan-
dard planes in ultrasound should be captured within a range of angles rather than
a single specific position. Therefore, we propose a novel paradigm for navigation:
initially pre-training a view-agnostic feature extractor that leverages intra-video
relative probe position information, followed by fine-tuning a regression model
to achieve the navigation. By utilizing the positional relationships between video
frames, we not only extract more robust view-agnostic features but also enhance
data efficiency. Our novel paradigm allows training on ultrasound data from any
protocol, which is crucial for real-world navigation applications.

To efficiently extract view-agnostic features from paired input frames xvi

and xvj , our approach utilizes a dual-backbone architecture where two networks
operate in parallel, sharing the weights. These extracted features fvi and fvj
are concatenated to form a combined representation of the image pair. Then,
this concatenated feature is fed into a rotation predictor P , which predicts the
relative rotation R̂vij between the relative probe positions pvi and pvj . We use
weighted least-squared error (MSE) as the loss function for the training:

L1 = MSE(P (E(xvi), E(xvj)), Rvij), (2)

where Rvij = p−1
vi pvj . In detail, the rotation predictor P consists of two lin-

ear layers with 256 hidden units and a ReLU activation function and a final
linear layer with 9 hidden units as the output layer. Subsequently, orthogonal
Procrustes orthonormalization method, as detailed in RoMa [1], is applied to
convert the 9-dimensional feature output into a standardized 3x3 rotation ma-
trix.

2.3 Target View Relative Rotation Regression

Based on the pre-trained view-agnostic feature extractor E, we train the guid-
ance module G according to the supervision of rotation matrices towards the
target standard planes. The guidance module is designed with two fully con-
nected layers separated by ReLU activations and the loss function is:

L2 = MSE(G(E(xvi)), Rvit). (3)

For the regression task, the final navigation target for each frame of the same
clinical scan should be consistent: the position of the target plane. Therefore, we
introduce a target consistency loss during the training process, defined as:

Lconsist = MSE(pviR̂vit, pvjR̂vjt), (4)

note that pvi and pvt should belong to the same video. Ultimately, our navigation
loss function combines the regression loss and the target consistency loss:

Lnavi = L2 + λLconsist, (5)
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where λ is the weight of the target consistency loss.

3 Experiments

3.1 Data acquisition

A total of 3932 clinical scans, including ultrasound videos and their correspond-
ing probe motion trajectory data, were acquired at Anonymous Hospital. These
scans were performed using a GE E95 scanner (General Electric, USA) equipped
with an M5Sc-D probe, with the video frame rate set at 58 Hz. To track the
probe’s motion, we developed a motion-tracking system equipped with a VIPER4
positioning unit (Polhemus, USA). The sensor of the positioning unit was at-
tached to the probe with a 3D-printed mounting adapter. The probe orientation
quaternions were sampled at 240Hz. The collected data is divided into two cat-
egories: A4C and A2C, totaling 2138 and 1794 clinical scans, respectively. For
A4C view, scans begin at the standard A4C view, with the probe then rotating
to a randomly generated point and subsequently returning to the standard A4C
view. For A2C view, a similar protocol is followed. We selected 10% of the data
as the validation set, resulting in 3540 training videos (1615 A4C, 1925 A2C) and
392 validation videos (179 A4C, 213 A2C). All video frames, originally 800x600,
were resized to 224x224 for training. We collected a total of 741522 frames for
A4C view and 353789 frames for A2C view. All the subjects used in this study
are with ethical committee approval.

3.2 Experimental Settings

We adopt ResNet18 [5], ResNet50 [5] and MobileNetV2 [13] as the backbone
networks for the view-agnostic feature extractor, respectively. We randomly se-
lect any two frames from a single scan as a pair for the network’s input, and
apply random Gaussian blur data augmentation to the input data. Gaussian
kernel sizes are uniformly sampled from 5 to 9, and sigma ranges from 0.1 to
5.0. To balance the data from two target views, we replicated the frames related
to A2C three times. The output dimension of the extracted image features from
these networks is consistently set to 128. During the training process, the batch
size is configured as 128, and each image is resized to 224x224 before input into
the networks. For rotation-related computation, we use the RoMa [1] package.
The AdamW [8] optimizer is used with a weight decay of 1 × 10−2. The learn-
ing rate is initialized to 1 × 10−3 and gradually reduced to 1 × 10−4. All the
experiments are implemented with PyTorch [11] framework using Nvidia GPU
V100. To evaluate the real-world performance of our visual navigation model,
we developed a visual navigation testing system on the Nvidia Jetson AGX Orin
developer kit. This system allows for the simultaneous visualization of real-time
ultrasound scan images and provides guidance on probe positioning. It is built
using the GTK4 GUI framework and the Nvidia Deepstream framework and
then compiled and deployed using Nvidia TensorRT.
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4 Results and Discussion

We use the geodesic distance d to evaluate the distance between the ground truth
rotation Rgt and the predicted rotation R̂ according to the previous work [12].
The geodesic distance d can be written as:

d(R̂, Rgt) = cos−1

[
tr(R̂⊤Rgt)− 1

2

]
. (6)

Table 1. Experimental results between different configurations and comparison results
for view-agnostic feature extractor

Target View Backbone w/o VFE w/ VFE

A4C
ResNet18 7.290 7.139
ResNet50 7.389 7.140

MobileNetV2 7.450 7.208

A2C
ResNet18 5.316 5.203
ResNet50 6.045 5.511

MobileNetV2 5.951 5.329

Table 2. Experimental results of target consistency loss

Target View Backbone w/o Lconsist w/ Lconsist

A4C MobileNetV2 7.208 7.055
A2C MobileNetV2 5.329 5.283

Ablation Study. In this section, we evaluate the view-agnostic feature ex-
tractor and the target consistency loss function through ablation experiments.
We first collected 200 series of standard view-random point-standard view ac-
quisitions by cardiac ultrasound experts. The positions of the first and second
standard views in the same acquisition were calculated, with an average rotation
angle between the two views of 5.677 ± 4.117 degrees. As shown in Table 1, the
view-agnostic feature extractor consistently enhances visual navigation accuracy
across different backbone architectures, achieving a difference of only about 1
degree compared to expert cardiac sonographers. Specifically, when utilizing Mo-
bileNet V2 as the backbone, it yields improvements of 0.242 degree on the A4C
view and 0.622 degree on the A2C view. We notice that the overall error in A2C
is lower than in A4C. This could be due to the larger window required for ob-
taining the A4C view, which poses higher challenges in fitting due to the greater
volatility in expert scanning. The results in Table 2 validate the effectiveness of
the target consistency loss function, resulting in improvements of 0.153 degree
on the A4C view and 0.046 degree on the A2C view with MobileNet V2.
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Fig. 2. Real-world scenario validation of A4C view planning with/without visual nav-
igation guidance.

Real-world Verification for Visual Navigation. To validate the practical
applicability of our proposed method, we selected three novice sonographers for
real clinical validation. Before the actual clinical validation, a senior ultrasound
physician first demonstrated and explained the fundamental knowledge and rou-
tine procedures for locating the standard A4C view. Each trainee was required
to first locate the standard A4C plane without the aid of the visual navigation
system, followed by locating the standard A4C view with the assistance of the
visual navigation system. This sequence was repeated five times, with the dura-
tion of each attempt recorded. A one-minute break was allocated between each
repetition, and any attempt exceeding three minutes was deemed a failure in
plane localization. As shown in Figure 2, we can observe that with the guidance
of the visual navigation system, the average time taken for each of the three
trainees’ five operations was reduced by at least 3.86 times. Furthermore, while
each trainee experienced one failed plane localization out of five attempts with-
out the visual navigation system, all five plane localizations were successful with
the assistance of the visual navigation system (see the supplementary materials
for details).

5 Conclusion

In this paper, we present the first real-world visual navigation system based on
the real human heart. This system consists of two parts: a view-agnostic feature
extractor and a regression module. The view-agnostic feature extractor learns the
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relative spatial relationships between ultrasound video frames and then trans-
fers this knowledge to the regression module to enhance the regression accuracy
across different views. In the specific-view regression tasks, we introduce a target
consistency loss to maintain the consistency of the target views within a single
scan, thus further improving the accuracy of visual navigation. Experimental
results suggest that our proposed method can consistently improve the accuracy
of cardiac ultrasound visual navigation. Furthermore, in practical clinical vali-
dation, our visual navigation system is shown to assist novice sonographers in
accurately locating the A4C view and reducing the time required for view local-
ization by 3.86 times. Therefore, our approach is crucial for clinical applications
in visual navigation for cardiac ultrasound view planning, and in the future, we
can extend it to other views of the heart as well as other organs.
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