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Abstract. Early prediction of hepatocellular carcinoma (HCC) is nec-
essary to facilitate appropriate surveillance strategy and reduce cancer
mortality. Incorporating CT scans and clinical time series can greatly
increase the accuracy of predictive models. However, there are two chal-
lenges to effective multi-modal learning: (a) CT scans and clinical time
series suffer from temporal misalignment. (b) CT scans can be missing
compared with clinical time series. To tackle the above challenges, we
propose a Temporal Neighboring Multi-modal Transformer with Miss-
ingness Aware Prompt (TNformer-MP) to integrate clinical time series
and available CT scans for HCC prediction. To explore the inter-modality
temporal correspondence, a Temporal Neighboring Multi-modal Tok-
enizer (TN-MT) is exploited to fuse CT embedding into neighboring
clinical time series tokens across multiple scales. To mitigate the per-
formance drop caused by missing CT modality, TNformer-MP exploits
a Missingness-aware Prompt-driven Multi-modal Tokenizer (MP-MT)
that adjusts the encoding of clinical time series tokens with learnable
prompts. Experiments conducted on large-scale multi-modal datasets of
36,353 patients show that our method achieves superior performance
compared to existing methods.

Keywords: Hepatocellular carcinoma - Multi-modal learning - Tempo-
ral neighboring - Prompt.

1 Introduction

Hepatocellular carcinoma (HCC) is the most common primary malignancy of
the liver and a leading cause of cancer-related fatalities in the world [21, 8, 4].
Early prediction of HCC is vital to mitigate costs, complications, and mortality.
Deep learning methods have shown promise in predicting HCC using clinical
time series data extracted from electronic health records [23,9, 1, 22|. However,
these uni-modal approaches have inherent limitations. Contrast-enhanced com-
puted tomography (CT) scans are a crucial component of screening and early
diagnosis of HCC in clinical practice [14, 15, 7]. Joint learning from both clinical
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time series and CT scans can enhance HCC prediction accuracy by leveraging
complementary information [12, 10]. Nevertheless, developing an effective multi-
modal model for these two modalities presents its challenges: (a) clinical time
series and CT scans exhibit temporal misalignment. As depicted in Figure.1,
there is a significant time gap between CT scans and clinical time series, posing
difficulties in bridging modality-specific features. (b) CT scans, being the auxil-
iary modality, may be missing. Obtaining paired data is not always feasible. For
instance, CT scans are collected less frequently compared to clinical time series
in real-world practice.
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Fig. 1: Incorporating both pathology in CT scan and biomarker information in
clinical time series is crucial for early HCC prediction. However, achieving this
objective is challenging: (1) CT scans exhibit significant time gaps with clinical
time series. (2) CT scans can be missing compared with clinical time series.

Recently, some multi-modal fusion models that combine medical images with
non-imaging clinical data have been proposed to outperform single-modality
models [19, 26, 5]. Multi-transSP [27] jointly learns the global feature correlations
among different modalities for nasopharyngeal carcinoma prediction. TMSS [20]
leverages the superiority of transformers in handling different modalities for can-
cer prediction. [11] propose a strategy to disentangle longitudinal signatures from
clinical time series and integrate them with chest CT scans for SPN classifica-
tion. Using head CT scans and tabular clinical data, [16] exploits a variational
distributions combination model to integrate multi-modal information for intrac-
erebral hemorrhage prediction. [13] leverages graph neural networks to capture
the node-level and global-level relationships between MR images and tabular
clinical data. it is worth noting that most existing models ignore the issue of
inter-modal temporal misalignment: they either rely on paired-modality data in
the time axis or only consider static medical information. Moreover, these mod-
els often assume modality completeness or require additional efforts to generate
missing modalities for completeness, which limits their applicability in address-
ing the scenario of missing CT data in HCC prediction.
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To tackle the aforementioned challenges, we proposed a Temporal Neigh-
boring Multimodal Transformer with Missingness-Aware Prompt (TNformer-
MP) that integrates clinical time series and CT scans for early HCC prediction.
Specifically, To bridge the paired modalities from temporal correspondence, we
introduce a Temporal Neighboring Multi-modal Tokenizer (TN-MT) to com-
bine each CT embedding with a neighboring range of clinical time series to-
kens across various scales. Moreover, for CT-missing patients, we introduce a
Missingness-aware Prompt-driven Multimodal Tokenizer (MP-MT) to adopt
learnable prompts to adapt the clinical time series tokens to the missing modality
scenario. Finally, TNformer-MP correlates the unified tokens using a transformer
encoder and performs the final prediction score.

Our contributions are summarized as follows: (1) We introduce a multi-modal
framework (TNformer-MP) to perform early HCC prediction by integrating clin-
ical time series and CT scans. (2) TNformer-MP proposes a temporal neighbor-
ing multi-modal tokenizer and a missingness-aware prompt-driven multimodal
tokenizer to bridge the paired modalities in the time domain while addressing
the modality incompleteness. (3) The effectiveness of our method is validated in
large-scale real-world patients.
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Fig. 2: Overview of the proposed Temporal Neighboring multi-modal transformer
with Missingness-aware Prompt (TNformer-MP).

2 Proposed Method

Figure 2 illustrates the overview of our proposed method. Modality-specific
features are first obtained by a CT encoder and a time series (TS) encoder.
On top of that, we propose a Temporal Neighboring multi-modal transformer
with Missingness-aware Prompt (TNformer-MP) to integrate both modality-
specific features for early HCC prediction. Specifically, to encode the unified
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tokens, a Temporal Neighboring Multi-modal Tokenizer (TN-MT) is exploited
to incorporate each CT embedding into neighboring clinical time series tokens
across multiple scales. To ensure the robustness of unified tokens in the CT-
missing scenario, we introduce a Missingness-aware Prompt-driven Multi-modal
Tokenizer (MP-MT) to adapt the clinical time series tokens with learnable
prompts. Finally, a stack of transformer encoder layers is applied to correlate
the unified tokens and perform prediction.

Given the multi-modal data of each patient, we extract modality-specific
features {G, E} by a CT encoder and TS encoder. G = {g;,....G; ... 9,, }
represents a collection of CT embeddings, where M indicates the number of CT
scans. E = {e4,...,€¢,,..., €1y } represents a set of clinical time series tokens,
where N denotes the sequence length. Then the following multi-modal tokenizers
are exploited to integrate the modal-specific features and generate a set of unified
tokens.

2.1 Temporal Neighboring Multi-Modal Tokenizer

To tackle the temporal misalignment, our motivation is that the pathology in
CT scans generally changes slowly compared to the rapid fluctuations in clinical
signals. Therefore, TN-MT learns the inter-modal temporal correspondence to
bridge each CT scan with a nearby range of clinical time series. Meanwhile, we
model the inter-modal temporal correspondence across multiple scales since the
different abnormalities in CT scans can have short-term or long-term impacts
on the clinical signal.

To model the multi-scale temporal correspondence, a time scale embedding
is first developed to learn a set of temporal Gaussian kernels with learnable
bandwidths:

”tm_th2
K (tmotn) = exp | —————
M = exp(Wq, + b),q, €{qy,...,qx}

where Ay is bandwidth estimated by an affine network and a learnable query
vector gq;,. Meanwhile, we exploite a set of query vectors {qy, ..., g } to param-
eterize multi-scale kernels. t,, and t,, denote the timestamps of CT and clinical
time series respectively.

Then each ky, (.) is utilized to distribute the CT embeddings to a set of
clinical time series tokens by measuring their temporal similarities:

R (tma tn)

N
g, = MEURSUANIY Z (tm, tN) = tnstn 2
gtn — Z (tmytN) gtm7 ( N) ;K/Ak ( ) ( )

where g, is the weighted sum of CT embeddings at each ¢,,. The unified token
is obtained by incorporating g, into e;, in a Residual Fusion Unit (RFU):

u;, = RFU (e, 3,,) = LayerNorm (e, +1) 3)
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n= ELU (W1€tn =+ ngtn + b) (4)

where e, is the primary input and g, —acts as the optional context vector. RFU
allows to control the extent to which the optional context vector contributes to
the primary input.

Based on the multi-head mechanism, the aforementioned process is executed
simultaneously with K temporal kernels. All output vectors at each time stamp
are then combined to form the ultimate unified token.

2.2 Missingness-Aware Prompt-Driven Multi-Modal Tokenizer

The CT modality incompleteness causes the different distributions of input to-
kens, which can degrade the performance. Recent research on prompt learning re-
search has shown promising adaptation in medical scenarios (2, 24, 25]. To tackle
the above problem, inspired by the prompt learning, MP-MT adopts learnable
prompts to tailor the model to the missing-modality input. In particular, instead
of directly prepending prompts to input tokens, it mimics the paired-modality
process to dynamically adapt the clinical time series tokens with prompts before
attaching them to the transformer layers.

For each prompt p, it is dynamically distributed to each timestamp by mea-
suring the compatibility with the corresponding clinical time series token via a
gate mechanism:

Dy, = Gate(p,e;,) = o(Wip+Waes, +b1) © (Wsp+by) (5)

where the p, denotes the weighted prompt vector at each t,. The weights
represent the compatibility between each clinical time series token and prompt
in Eq.(5), which is generated by a sigmoid function ¢. In this way, the gate
mechanism allows the network to selectively adjust input tokens.

To sufficiently adapt the corresponding clinical time series token with the
weighted prompt vector p, , MP-MT mimics the paired-modality process to
integrate e;, and p, via an RFU:

u;, = RFU (e;,,p, ) = LayerNorm (e;, + W3n)

> 6)
n = ELU (Wie,, + Wap, +b)

where RFU fully updates e;, by fusing with p, and controling the extent
to which the updated embedding contributes to the original token. A set of
P prompts are simultaneously utilized for adaptation based on the multi-head
mechanism. Furthermore, all output vectors are combined.

Finally, the unified tokens are input into a stack of transformer encoder layers
and the prediction probability is obtained by a prediction layer.

3 Experiments

3.1 Experiment Settings

Dataset. We conduct the HCC prediction experiments on a territory-wide co-
hort of patients with chronic viral hepatitis (CVH). The data is collected from
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Table 1: HCC prediction performance in different test sets.

Modality Prediction Model (TS + CT) opp, (TS + CT)panrTiaL (TS + CT)par
‘Window AUROC AUPRC | AUROC AUPRC | AUROC AUPRC
Lvear CT Encoder - - - - 80.2+1.6 32.6£1.9
y TS Encoder | 87.6+1.3 32.5+2.6 | 86.6+2.1 33.9£1.7 | 90.1+£0.8 47.94+2.1

CT Encoder - - - - 77.5+£2.4  22.3+1.9
TS Encoder | 85.3+1.4 27.543.1 | 84.24+1.7 25.24+2.3 | 83.7+£2.3 38.3+2.7
CT Encoder - - - 75.4+3.1 12.7+2.5

Uni-Modal 2-year

3-yee )
year TS Encoder | 84.7+2.2 21.242.8 | 83.7£2.3 19.74£3.5 | 87.5+2.7 24.54+3.3
MedFuse[6] | 88.9+2.1 35.7+£1.8 | 87.5£1.9 34.74+3.1 | 89.3+2.5 48.7+1.9
L-year TMSS[20] | 88.5+3.1 37.2+2.3 | 86.8+2.2 35.14+2.5 | 89.6+1.9 49.6+2.3

TDSig[11] | 89.6+1.8 38.3+1.6 | 88.24+1.5 35.9+1.8 | 90.6+2.1 49.44+24

Ours 91.5+2.3 39.8+2.2|89.6+1.7 37.242.1|92.842.4 51.7+2.4
MedFuse[6] | 86.7+2.4 33.8+1.7 | 86.1£2.2 27.842.7 | 89.4+2.8 40.14£2.3
TMSS[20] | 87.3+£1.9 34.242.5 | 86.9£2.4 28.34+3.3 | 90.1+2.1 42.3+2.7
TDSig[11] | 87.94£2.5 34.94£2.1 | 87.14+1.8 29.242.5 | 90.6+£1.6 43.1£2.2

Ours 89.2+2.1 35.7+1.9|88.2+1.7 31.24+2.3|91.1+2.3 45.3+1.9
MedFusel6] | 85.1+2.9 23.942.3 | 84.3£2.5 21.243.6 | 88.9+2.3 28.7+3.1
TMSS[20] | 85.8+2.5 24.6+2.6 | 84.9+2.8 22.74+3.1 | 89.3+3.1 30.1£2.5
TDSig[11] | 85.3+2.1 26.1+2.7 | 84.54+2.1 23.8+1.7 | 89.7+£2.7 31.4+3.3

Ours 86.71+2.6 28.1+2.1|86.1+2.3 25.14+2.7|90.1+2.5 33.6+2.7

Multi-Modal 2-year

3-year

the Hospital Authority Data Collaboration Lab (HADCL), Hong Kong. We take
the 15-year follow-up for patients, starting from the first CVH diagnosis date.
During this follow-up, we extracted the records of 46 clinical parameters follow-
ing [21], which form the clinical time series data for each patient. We extracted
all available CT scans for each patient during the follow-up period. Following the
above procedures, we obtained a cohort of 36,353 patients, wherein 7.4% of the
patients were diagnosed with HCC during the follow-up. The dataset consists of
36,353 clinical time series and 7,622 CT scans extracted from 36,353 patients,
with 5,216 patients having both clinical time series and CT scan.

Prediction Window. We conduct the N-year (i.e., N=1,2,3) prediction
task (predict the likelihood of HCC diagnosis for a patient N years after the
last visit). In each N-year prediction configuration, we ascertain the inclusion
of positive patients by imposing the criterion that the HCC diagnosis date must
exceed N years beyond the date of the last visit.

Data Split. The dataset is randomly split into a training set (70%), a val-
idation set (10%) and a test set (20%). The results of 5-fold cross-validation
results are reported. The test set can be categorized into three subsets accord-
ing to the modality availability: (1) (TS 4+ CT) 4y, includes all patients. (2)
(TS + CT)pa g includes patients with paired modalities. (3) (TS + CT)parTIAL
includes patients with only clinical time series.

Metrics. The experimental results are evaluated in terms of the area under
the receiver operator characteristic curves (AUROC) and the area under the
precision-recall curve (AUPRC). In addition, we also evaluate the risk stratifica-
tion performance based on the dual-cutoff strategy [18,3,17], where two cutoff
values with sensitivity > 90% and specificity > 90% are selected. Accordingly,
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patients are categorized into low-risk, intermediate-risk, and high-risk levels.
The most predictive model is expected to maximize the sensitivity & precision
for high-risk patients while prioritizing specificity & negative predictive value
(NPV) for low-risk patients.

More implementation details are included in supplementary material.

3.2 Evaluations

Compared with State-of-the-Art Methods. To evaluate the effectiveness
of our method, we compare with three recent multi-modal models, namely Med-
Fuse[6], TMSS|20] and TDSig[11]. Table 1 presents the accuracy performance
in three prediction windows. We first observe that incorporating CT scans as
an auxiliary modality during both training and inference enhances the perfor-
mance of the uni-modal prediction. Our method outperforms all other methods
consistently in terms of AUROC and AUPRC for both paired and unpaired test
sets. Notably, as the prediction window increases, we notice that the impact of
multi-modal fusion becomes more necessary compared to uni-modal learning. In
this regard, our method demonstrates a larger improvement gain than the other
approaches, particularly for larger prediction windows.

2 High-risk Patients 100 High-risk Patients
375 Uni-Modal (All TS)

3 = 150 | Multi-Modal (TMSS)
<6 § > Multi-Modal (TDSig)
> o 325 = Multi-Modal (Ours)
= 2 300
E @
g 50 h)) 275
[} a 250
® 45 225

40 20.0

1 years 2 years 3 years 1 years 2 years 3 years
Prediction Window Prediction Window
(a) High-risk Patients

100 Low-risk Patients o Low-risk Patients
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T eso 9571 mm Multi-Modal (TMSS)
< - —~ o Multi-Modal (TDSig)
2625 ] T x mmm Multi-Modal (Ours) [ |
'O 60.0 ; 93 -
E= a ||
g 57.5 Z 9
Q. 55.0

52.5 o

50.0 90
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Fig. 3: Performance of risk stratification across different methods

Risk Stratification In Different Prediction Windows. We conduct exper-
iments to validate the risk stratification performance based on the dual-cutoff
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strategy (Supplementary Information: Section C). The patients are categorized
into low, intermediate, and high-risk levels. As depicted in Figure 3 (a), our
method exhibits superior sensitivity and precision for high-risk patients com-
pared to the other baselines. And the improvement is more pronounced as the
prediction window expands. This indicates that our method can assist clinicians
in providing timely interventions. In addition, as depicted in Figure 3 (b), our
method achieves better specificity and negative predictive value for low-risk pa-
tients. This enables clinicians to allocate healthcare resources efficiently.

Table 2: Ablation study.

Prediction| [ oM Mpvr | (FS + CT)ALL [(TS 4 CT)PARTIAL| (TS + CT)PAIR
Window AUROC AUPRC |[AUROC AUPRC |AUROC AUPRC
baseline 89.142.1 37.241.6 | 86.542.3  40.7+1.9 | 89.4+2.1 48.94+2.6

Lvenr | W/0 MP-MT v 00.14+1.8 38.142.7 | 88.242.7 42,6425 | 91.743.2 51.142.1
’ w/o TN-MT v 00.942.5 38.942.1 | 89.141.5  43.942.3 | 90.6+1.8 50.3+1.8
Ours v v 91.5+2.3 39.8+2.2(89.6+1.7 37.2+2.1 |92.8+2.4 51.7+2.4

baseline 86.6£1.7 32.7+2.7 | 84.1425  265+1.5 | 89.1+1.5 43.5+2.3

2-year w/o MP-MT| v/ 87.642.3 33.9+1.3 | 85.942.1  28.642.3 | 90.242.1 44.1+1.8
w/o TN-MT v 88.742.7 34.942.5 | 87.442.3  30.74£3.2 | 89.5+1.7 42.9+1.6

Ours v v 89.2+2.1 35.7+1.9(88.2+1.7 31.2+2.3 [91.1+2.3 45.3+1.9

baseline 84.1424 243416 | 82.9+1.8  21.842.3 | 87.243.1 30.8+3.1

S.year w/o MP-MT| v 85.343.1 262425 | 84.3+2.6  23.643.1 | 89.6+£2.3 32.942.1
w/o TN-MT v 86.142.4 27.642.6 | 85.642.1  24.742.3 | 884425 31.8+1.7

Ours v v |86.7+2.6 28.1+2.1(86.1+2.3 25.1+2.7 |90.1+2.5 33.6+2.7

Ablation Study. We perform ablation studies over each component of our
method. We compare three variants of our method: (1) baseline: it directly con-
catenates CT embeddings to clinical time series tokens. (2) w/o MP-MT: it
removes the MP-MT. (3) w/o TN-MT: it replaces the TN-MT with the con-
catenation of paired-modality tokens. Table 2 illustrates the comparison re-
sults. Ours significantly outperforms the w/o MP-MT and w/o TN-MT in
the (TS + CT) oy 1., demonstrating the effectiveness of two novel modules. The
significant improvement with w/o MP-MT over baseline in (TS + CT)par
demonstrates the advantage of temporal correspondence modeling in the multi-
modal learning based on CT scans and clinical time series. There are large
performance gaps between w/o TN-MT and baseline in the (TS + CT),qp,
and (TS + CT)parrrar: demonstrating that the sufficient interaction between
prompts and clinical time series can substantially improve the performance of
missing-modality samples with multi-modal learning.

4 Conclusion

In this paper, we propose a temporal neighboring multi-modal Transformer with
missingness-aware prompt for early HCC prediction based on clinical time series
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and CT scans. A temporal neighboring multi-modal tokenizer and missingness-
aware prompt-driven multi-modal tokenizer are introduced to bridge the modality-
specific features with the temporal correspondence while addressing the modal-
ity incompleteness. Experiments in large-scale real-world patients show that our
method yields superior prediction performance with promising risk stratification.
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