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Abstract. Metastasis prediction based on gigapixel histopathology whole-
slide images (WSIs) is crucial for early diagnosis and clinical decision-
making of clear cell renal cell carcinoma (ccRCC). However, most ex-
isting methods focus on extracting task-related features from a single
WSI, while ignoring the correlations among WSIs, which is important
for metastasis prediction when a single patient has multiple pathological
slides. In this case, we propose a multi-slice-based hypergraph compu-
tation (MSHGC) method for metastasis prediction, which considers the
intra-correlations within a single WSI and cross-correlations among mul-
tiple WSIs of a single patient simultaneously. Specifically, intra-correlations
are captured within both topology and semantic feature spaces, while
cross-correlations are modeled between the patches from different WSIs.
Finally, the attention mechanism is used to suppress the contribution
of task-irrelevant patches and enhance the contribution of task-relevant
patches. MSHGC achieves the C-index of 0.8441 and 0.8390 on two car-
cinoma datasets, outperforming state-of-the-art methods, which demon-
strates the effectiveness of the proposed MSHGC.

Keywords: Metastasis prediction · Multiple WSIs · Cross-correlations
· Hypergraph.

1 Introduction

Metastasis prediction [4, 16] based on histopathology whole slide images (WSIs)
aims to predict the risk of cancer metastasis based on the patient’s pathological
slice. Most WSI-based methods only consider features from a single WSI, but a
patient may have multiple WSIs, which can provide more information about the
current condition of the cancer. As a result, we focus on metastasis prediction
on multi-slice, whose key challenge is how to capture the task-relevant features
within multiple gigapixel WSIs of each patient.

There has been much effort attempting to address this challenge. CLAM [13]
applies multiple instance learning (MIL) and proposes an attention-based pool-
ing function that can automatically identify subregions of high diagnostic value,
which ignores the correlations between the patches. DeepGraphSurv [12] embeds
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patches into semantic feature space and constructs a graph to model the rela-
tionships between patches according to semantic feature distance. Patch-GCN [1]
treats the patches as a 2D point cloud and constructs the graph in the image
space. However, both methods are developed based on GNNs, which can only
capture pairwise interactions for representation learning. It is important to note
that in the WSIs, interactions often occur among groups of three or more nodes
and cannot be simply described by binary relationships.

Hypergraph neural networks [9, 19, 6] are the extension of GNNs to learn
high-order correlations, in which hyperedges can connect more than two vertices.
HGSurvNet [3] utilizes the hypergraph to model the complex correlations among
the patches, which focuses on intra-correlations within a single WSI. However,
due to the heterogeneity of tumors, different WSIs from the same patient often
contain diverse information related to the disease, which is complementary. By
amalgamating these complementary features, we can enrich the predictive signal,
thereby refining the performance of survival prediction algorithms in clinical
settings, while existing methods cannot model the high-order correlations among
multiple WSIs, which limits the performance of the model.

In this paper, we propose a multi-slice-based hypergraph computation (MSHGC)
framework for metastasis prediction based on multiple WSIs, in which the intra-
correlations within a single WSI and the cross-correlations between the WSIs
of each patient are both taken into consideration by utilizing multi-slice hyper-
graph convolution. For the intra-correlations, we only consider the patches from
a single WSI, and both topological connection and semantic feature distances
are utilized to construct an intra-hypergraph. For the cross-correlations, We con-
sider the relationships between patches from different WSIs and construct the
cross-hypergraph in semantic feature space. Finally, we utilize the self-attention
mechanism [17] to assign weights to each patch for aggregating patch-level fea-
tures into global features. The main contributions are summarized as follows:

– We propose a multi-slice-based hypergraph computation method for metas-
tasis prediction on multiple WSIs. The proposed method effectively achieves
high-order correlation modeling and learning based on multi-slice in a uni-
form framework.

– To obtain a more comprehensive task-specific global representation of a pa-
tient on multiple WSIs, we apply an attention mechanism to compute the
self-attention score of each patch, which is guided by multi-slice high-order
correlation, as its contribution to the metastasis risk prediction results.

– The proposed MSHGC is validated on two carcinoma datasets. The exper-
imental results demonstrate that the proposed MSHGC outperforms the
state-of-the-art methods, including graph-based, MIL-based, and hypergraph-
based methods.

2 Method

The Fig.1 is the framework of MSHGC. Firstly, we construct two types of
hypergraph, intra-hypergraph and cross-hypergraph, by multi-slice hypergraph
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Fig. 1. The framework of MSHGC. 1) The multi-space hyperedge of the intra-
hypergraph is constructed in topology space and feature space, while the cross-
hypergraph is constructed in feature space. 2) Multi-slice hypergraph convolution block
has four hypergraph convolution modules that contain two steps, message passing from
V to E and E to V.

structure constructing module. Intra-hypergraph is constructed in both topology
space and feature space, while cross-hypergraph is only constructed in feature
space. Secondly, the features of patches and hypergraphs are fed into a multi-
slice hypergraph convolution block to capture the complex high-order correla-
tions within and across WSIs. Finally, through the self-attention mechanism, we
aggregate the weighted patch-level features to global representation, on which
the metastasis risk is predicted by a fully connected layer.

2.1 Multi-Slice Hypergraph Structure Constructing

Given a sample patient P withM WSIs, a random patch sampling process is first
implemented in each WSI to generate N patches, where N is a fixed sampled
patch number. The patches are fed into a pre-trained ResNet model [7] to yield
pathology semantic features. In that case, a patient can be represented by the
features Xp = {X1, ...,XM}, where Xi ∈ RN×C denotes the features of ith WSI
and C denotes the feature dimension of a single patch.

To conduct the multi-slice hypergraph convolution block, two types of hy-
pergraph are needed: intra-hypergraph and cross-hypergraph.
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For intra-hypergraph, we only take patches sampled from the same WSI into
consideration. To capture the high-order correlations between patches, we uti-
lize both topological connections and semantic pathological features to generate
multi-space hyperedge. To be specific, given a patch i as vertex vi, the KNN
method is used to find neighbor vertices for vi in the topological space and se-
mantic feature space to establish hyperedges respectively. The distance between
vertices in the semantic feature space d(vi, vj) and topological space g(vi, vj) are
defined by the following formulas:

d(vi, vj) = (
∑C

c=1(Fi[c]−Fj [c])
2)

1
2 , (1)

g(vi, vj) = ((xi − xj)
2 + (yi − yj)

2)
1
2 , (2)

where vi, Fi and (xi, yi) denote the ith vertex, the features of ith vertex and
the center coordinates of the ith vertex in WSI. For cross-hypergraph, all sam-
pled patches are taken into consideration. However, as the topological distance
between patches sampled from different WSIs is difficult to measure, the cross-
hypergraph only constructs hyperedges in the semantic feature space by using
the KNN method. It should be noted that in order to avoid interference among
patches from the same WSI, we manually set the semantic feature distance
among patches sampled from the same WSI to infinity.

A hypergraph can be represented by an incidence matrix H ∈ RV×E , where
V and E denote the number of vertex and hyperedge respectively. The element
in H is defined as

h(v, e) =

{
1, v ∈ e

0, v /∈ e
, (3)

where v and e denote vertex and hyperedge, respectively. Finally, for patient P
with M WSIs, we can get M intra-hypergraph Hintra ∈ RN×2N and a cross-
hypergraph Hcross ∈ RMN×MN .

2.2 Multi-Slice Hypergraph Convolution Block

As shown in Fig.1, we design a multi-slice hypergraph convolution block to con-
duct the multi-slice-based hypergraph computation, which is based on the sev-
eral hypergraph convolution operation[5]. The hypergraph convolution consists
of three steps: 1) Vertex Feature Reweighting. The input vertex features,
Xin, are reweighted by multiplying with learnable parameters Θ. 2) Message
Passing from V to E. The reweighted vertex features Fv connected by hyper-
edges are integrated into hyperedge features Fe ∈ RE×C , which is achieved by
multiplying H⊤ ∈ RE×V with Fv ∈ RV×C . 3) Message Passing from E to V.
Finally, the output vertex features Xout ∈ RV×C are obtained by multiplying
H ∈ RV×E with Fe ∈ RE×C .

A multi-slice hypergraph convolution block consists of two stages: 1) intra-
hypergraph computation and 2) cross-hypergraph computation. In particular, for
a patient P with {{X1, ...,XM}, {H1

intra, ...,H
M
intra},Hcross}, the intra-hypergraph
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computation consists ofM hypergraph convolution branches. The intra-hypergraph
computation in the lth layer can be formulated as:

{Xi
intra}Mi=1 = {(Di

v)
− 1

2Hi
intra(D

i
e)

−1(Hi
intra)

⊤(Di
v)

− 1
2Xi

(l)Θ
i
(l)}

M
i=1, (4)

where Di
e ∈ RE×E and Di

v ∈ RV×V denote the diagonal degree matrix of hy-
peredges and vertices of Hi

intra respectively, i denotes the ith branch. Then,
the results of intra-hypergraph computation are concatenated and fed into a
cross-hypergraph computation module that is similar to Eq.4 but replace Hi

intra

with Hcross. Finally, we add a residual block followed by a non-linear activation
function δ(·). A multi-slice hypergraph convolution block can be represented by:

X(l+1) = δ(Hyconv(Concat({Hyconv(Xi
(l),H

i
intra)}Mi=1),Hcross) +X(l)), (5)

where Hyconv(·) denotes the hypergraph convolution operation, Concat(·) de-
notes concatenation operation. After several multi-slice hypergraph convolution
blocks, the learned patient features X(n) ∈ RMN×C can be obtained.

2.3 Metastasis Prediction

The outputs of several multi-slice hypergraph convolution blocks are still patch-
level features, which are not suitable for predicting the metastasis risk of the
patient. The simplest way is to aggregate patch-level features into patient-level
features by average pooling or max pooling operations, which is suboptimal in
case each patch contains different information relevant to metastasis prediction.
Therefore, we design an attention module to assign weights to each patch and ag-
gregate patch-level features into patient-level features according to the weights.
The process of generating attention can be defined as follows:

A = L1((X(n)Wq)(X(n)Wk)
⊤Wa), (6)

where Wq ∈ RC×C/r, Wk ∈ RC×C/r and Wa ∈ RMN×1 are learnable
matrices, r is the scale factor, A ∈ RMN×1 is the attention matrix, L1(·) denotes
the L1 normalization. By multiplying A⊤ ∈ R1×MN with X(n) ∈ RMN×C , we
can obtain the patient-level features Xp ∈ R1×C that be used to predict the
metastasis risk by a fully connected layer.

To train the model, we use the negative Cox log partial likelihood loss func-
tion [20] as a supervision signal, formulated as follows:

LNLL =

P∑
i=1

δi(−spi + log
∑

j∈{j:sgj≤sgi }

exp(spj )), (7)

where spi and sgi denote the predicted result and ground truth, respectively. P
is the number of comparable pairs. δi denotes whether the sample is censored.
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Table 1. Datasets statistics.
LMT and SMT denote the
longest and shortest metastasis
time of each dataset, respec-
tively. C-rate denotes the propor-
tion of censored samples.

Dataset ccRCC H1 ccRCC H2

patients 111 92
WSIs 333 276
LMT 1593 1887
SMT 64 81

C-rate (%) 87.39 85.87

Table 2. Results for different methods on
ccRCC H1 and ccRCC H2 measured by C-index.

Methods ccRCC H1 ccRCC H2

MIL Attention [8] 0.5845±0.262 0.6808±0.125

DTFD-MIL [21] 0.6799±0.156 0.7704±0.121

TransMIL [15] 0.6331±0.248 0.8031±0.135

CLAM [13] 0.7419±0.253 0.7615±0.175

DeepGraphSurv [12] 0.6890±0.193 0.7747±0.160

Patch-GCN [1] 0.6963±0.191 0.7072±0.204

TEA-Graph [11] 0.6473±0.250 0.5804±0.171

HGSurvNet [3] 0.8072±0.061 0.8011±0.135

MSHGC(Ours) 0.8441±0.059 0.8390±0.060

3 Experiments

3.1 Datasets

The proposed MSHGC was evaluated on two ccRCC datasets collected from
the cooperative hospital. Each patient in the dataset has three WSIs. Table 1
summarizes the detailed statistical information for the datasets.

3.2 Methods for Comparison

The proposed methods are compared with eight typical state-of-the-art methods.
The codes are reproduced based on the released codes or detailed introductions.

1) MIL Attention [8] applies multiple instance learning (MIL) to train the
model. Patches are regarded as instances, whose features are aggregated by
attention mechanism to obtain the global features of the patient.

2) TransMIL [15] is a Transformer-based MIL method, which extracts task-
relevant features more accurately by modeling correlations between instances.

3) CLAM [13] proposes an attention-based pooling function that can automat-
ically identify subregions of high diagnostic value and aggregate patch-level
features into slide-level representations.

4) DTFD-MIL [21] introduces the concept of pseudo-bags to virtually enlarge
the number of bags, and proposes a double-tier MIL framework to extract
the task-relevant features more effectively.

5) DeepGraphSurv [12] takes the global topological structures of WSIs into
consideration and reduces the randomness of patch sampling by attention
mechanism to increase model robustness.

6) Patch-GCN [1] treats the patches as a 2D point cloud and constructs graph
structures in the image space. It hierarchically aggregates instance-level his-
tology features by a context-aware graph convolutional network.

7) TEA-Graph [11] uses a graph attention network [18] (GAT) with positional
embeddings to extract the context features around the patch by aggregating
the neighborhoods of the patch with different attention scores.
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Fig. 2. The experimental results of four methods (TransMIL, Patch-GCN, HGSurvNet,
and MSHGC) measured by KM-estimation curves of two datasets. More distinguish
gaps between high- and low-risk curves correspond to better classification performance.

8) HGSurvNet [3] applies hypergraph to model the high-order correlations
among the patches and combines the hyperedge features and node features
to generate the global representation of WSIs.

3.3 Implementation

For each WSI, we first filter out the unnecessary white background by OTSU [14]
algorithm. From each WSI, we randomly sample 2000 patches whose semantic
features are extracted by ResNet-34 [7] model pre-trained on ImageNet [2], and
the feature dimension is xi ∈ R1×512. The number of multi-slice hypergraph
convolution blocks is set to 3. For training, we use stochastic gradient descent
with momentum 0.9 and weight decay 5× 10−4 with a mini-batch size of 8. The
training epoch is set to 100 for each fold. The initial learning rate is set to 0.01.
The training process is implemented on an NVIDIA GeForce RTX 3090 GPU.

The five-fold cross-validation strategy is adopted for the proposed method
and the compared methods. The results are presented as a composite of the mean
values and standard errors obtained from the five-fold cross-validation process.

3.4 Results and Discussions

The experimental results of all the methods measured by C-index on the two
datasets are presented in Table 2. MSHGC outperforms all compared meth-
ods, achieving the C-index of 0.8441 and 0.8390 on ccRCC H1 and ccRCC H2
respectively.

The proposed MSHGC outperformed MIL-based methods, as MIL Attention,
DTFD-MIL, and CLAM ignore the correlations between the patches, which is
significantly important in metastasis prediction. While TransMIL takes the cor-
relations between patches into consideration, the noise is also introduced due
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Table 3. Ablation study: Comparison on different settings of MSHGC.

Aggregation Intra-Cross HyConv
ccRCC H1 ccRCC H2

Mean Max Attention Intra-HyConv Cross-HyConv

✓ ✓ 0.7005±0.0221 0.6563±0.114

✓ ✓ 0.7914±0.065 0.7412±0.066

✓ ✓ 0.7364±0.145 0.6660±0.192

✓ ✓ 0.7683±0.180 0.8242±0.101

✓ ✓ 0.8441±0.059 0.8390±0.060

to the full connection with patches that are irrelevant to the task. In contrast,
MSHGC uses hypergraph convolution to perform feature fusion between patches
with similar semantics, avoiding the introduction of too many task-irrelevant fea-
tures.

Table 2 shows that MSHGC has superior performance than the state-of-
the-art graph-based method [1, 11, 12], which demonstrates the limitations of
pairwise correlations in modeling of high-order correlations between patches.
HGSurvNet uses hypergraphs to model the correlations between patches and
achieve better performance than MIL-based methods and graph-based methods,
which indicates the superior performance of hypergraphs in modeling high-order
correlations. However, HGSurvNet ignores the correlations among the WSIs of a
single patient, which limits the performance of HGSurvNet. However, MSHGC
not only models the high-order correlations within a single WSI but also captures
the information among WSIs by multi-slice hypergraph convolution blocks.

Furthermore, The experimental results of four methods (TransMIL, Patch-
GCN, HGSurvNet, and MSHGC) measured by KM-estimation curves [10] of two
datasets are shown in Fig. 2. It can be seen that MSHGC has the most signif-
icant gap between the curves of the low- and high-risk groups, which denotes
that MSHGC has better capability of binary risk classification. All the experi-
mental results demonstrate that the proposed MSHGC method outperforms all
the compared methods, including MIL-based methods, the graph-based method,
and the latest hypergraph-based method.

3.5 Ablation Study

To evaluate the effectiveness of different components in MSHGC, We conducted
ablation experiments on two datasets, whose results are shown in Table 3. Ex-
perimental results show that compared to using only intra-hypergraph convo-
lution (Intra-HyConv) or cross-hypergraph convolution (Cross-HyConv), using
both simultaneously achieves the best performance, which indicates the impor-
tance of intra- and cross-correlations. Furthermore, we apply average pooling,
max pooling, and attention-based pooling as aggregation functions respectively.
The attention-based method outperforms two other methods, which proves the
effectiveness of the attention-based pooling function.
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4 Conclusion

Despite WSI-based methods have made progress in recent years, few existing
methods extract features based on multi-slice from a single patient. In this
work, the proposed MSHGC captures the complex correlations within and across
WSIs in a unified framework by innovative multi-slice hypergraph convolution
block. To better extract intra-correlations, MSHGC considers both topological
connections and semantic pathology features between patches to construct an
intra-hypergraph. For constructing a cross-hypergraph, the relationship between
patches from the same WSI is ignored to capture cross-correlations more accu-
rately. Finally, MSHGC reduces the interference of task-irrelevant patches on
metastasis prediction by the attention module to further improve model per-
formance. Experimental results on two carcinoma datasets demonstrate that
MSHGC outperforms the state-of-the-art methods for metastasis prediction.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China under Grant No. 62173269.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

References

1. Chen, R.J., Lu, M.Y., Shaban, M., Chen, C., Chen, T.Y., Williamson, D.F., Mah-
mood, F.: Whole slide images are 2d point clouds: Context-aware survival predic-
tion using patch-based graph convolutional networks. In: MICCAI. pp. 339–349.
Springer (2021)

2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A large-scale
hierarchical image database. In: CVPR. pp. 248–255. IEEE (2009)

3. Di, D., Zou, C., Feng, Y., Zhou, H., Ji, R., Dai, Q., Gao, Y.: Generating hypergraph-
based high-order representations of whole-slide histopathological images for sur-
vival prediction. IEEE Trans. Pattern Anal. Mach. Intell. 45(5), 5800–5815 (2022)

4. Fan, K., Wen, S., Deng, Z.: Deep learning for detecting breast cancer metastases
on wsi. In: Innovation in Medicine and Healthcare Systems, and Multimedia: Pro-
ceedings of KES-InMed-19 and KES-IIMSS-19 Conferences. pp. 137–145. Springer
(2019)

5. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In:
AAAI. vol. 33, pp. 3558–3565 (2019)

6. Gao, Y., Ji, S., Han, X., Dai, Q.: Hypergraph computation. Engineering (2024)
7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: CVPR. pp. 770–778 (2016)
8. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning.

In: ICML. pp. 2127–2136. PMLR (2018)
9. Jiang, J., Wei, Y., Feng, Y., Cao, J., Gao, Y.: Dynamic hypergraph neural networks.

In: IJCAI. pp. 2635–2641 (2019)
10. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations.

J. Am. Stat. Assoc 53(282), 457–481 (1958)



10 H. Zhou et al.

11. Lee, Y., Park, J.H., Oh, S., Shin, K., Sun, J., Jung, M., Lee, C., Kim, H., Chung,
J.H., Moon, K.C., et al.: Derivation of prognostic contextual histopathological
features from whole-slide images of tumours via graph deep learning. Nat. Biomed.
Eng. pp. 1–15 (2022)

12. Li, R., Yao, J., Zhu, X., Li, Y., Huang, J.: Graph CNN for survival analysis on
whole slide pathological images. In: MICCAI. pp. 174–182. Springer (2018)

13. Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood,
F.: Data-efficient and weakly supervised computational pathology on whole-slide
images. Nature biomedical engineering 5(6), 555–570 (2021)

14. Otsu, N.: A threshold selection method from gray-level histograms. IEEE transac-
tions on systems, man, and cybernetics 9(1), 62–66 (1979)

15. Shao, Z., Bian, H., Chen, Y., Wang, Y., Zhang, J., Ji, X., et al.: TransMIL: Trans-
former based correlated multiple instance learning for whole slide image classifica-
tion. Advances in neural information processing systems 34, 2136–2147 (2021)

16. Song, J.H., Hong, Y., Kim, E.R., Kim, S.H., Sohn, I.: Utility of artificial intelli-
gence with deep learning of hematoxylin and eosin-stained whole slide images to
predict lymph node metastasis in t1 colorectal cancer using endoscopically resected
specimens; prediction of lymph node metastasis in t1 colorectal cancer. Journal of
gastroenterology 57(9), 654–666 (2022)

17. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)
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