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Abstract. Prostate cancer is a highly prevalent cancer and ranks as
the second leading cause of cancer-related deaths in men globally. Re-
cently, the utilization of multi-modality transrectal ultrasound (TRUS)
has gained significant traction as a valuable technique for guiding prostate
biopsies. In this study, we present a novel learning framework for clini-
cally significant prostate cancer (csPCa) classification by using multi-
modality TRUS. The proposed framework employs two separate 3D
ResNet-50 to extract distinctive features from B-mode and shear wave
elastography (SWE). Additionally, an attention module is incorporated
to effectively refine B-mode features and aggregate the extracted fea-
tures from both modalities. Furthermore, we utilize few shot segmen-
tation task to enhance the capacity of the classification encoder. Due
to the limited availability of csPCa masks, a prototype correction mod-
ule is employed to extract representative prototypes of csPCa. The per-
formance of the framework is assessed on a large-scale dataset consist-
ing of 512 TRUS videos with biopsy-proved prostate cancer. The re-
sults demonstrate the strong capability in accurately identifying csPCa,
achieving an area under the curve (AUC) of 0.86. Moreover, the frame-
work generates visual class activation mapping (CAM), which can serve
as valuable assistance for localizing csPCa. These CAM images may of-
fer valuable guidance during TRUS-guided targeted biopsies, enhancing
the efficacy of the biopsy procedure. The code is available at https:
//github.com/2313595986/SmileCode.
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Fig. 1. Visualization of csPCa masks (red) on the specific frames from 4 TRUS videos.

1 Introduction

Prostate cancer (PCa) is one of the most prevalent malignancies among men [16].
Prostate biopsy is the most reliable method for PCa diagnosis. Based on the
microscopic appearance of prostate tissue, the results can be divided into benign
prostatic hyperplasia (BPH), clinically significant PCa (csPCa) and clinically
insignificant PCa (cisPCa) [13]. Since csPCa generally exhibits a worse prognosis
and requires timely treatment, identifying csPCa patients helps improve the
survival rate.

According to the current guidelines, any suspected PCa patients should have
a multiparametric magnetic resonance imaging (mp-MRI) before biopsy [2].
Prostate mp-MRI is capable of depicting localization and morphology of PCa,
thereby facilitating the implementation of the biopsy. However, the widespread
implementation of prostate mp-MRI is restricted due to complex operations and
high cost. Transrectal ultrasound (TRUS) serves as a commonly used modal-
ity for the guidance of prostate biopsies [6], yet the low contrast TRUS poses
challenges for clinicians to identify PCa regions (see Fig. 1). It inevitably re-
sults in more unnecessary biopsies, with a higher risk of complications such as
rectal bleeding [12]. Hence, it is crucial to develop effective strategies for csPCa
detection in TRUS.

Previous study [1] indicated that regions assigned a Gleason score of 7 exhib-
ited statistically higher Young’s modulus compared to regions with a Gleason
score of 6. Building upon this finding, Wildeboer et al. [19] developed a random
forest classifier analyzing B-mode, shear wave elastography (SWE) and contrast-
enhanced ultrasound, reached area under curves (AUC) of 0.75 for PCa. Liang et
al. [10] utilized a radiomics model that incorporated B-mode and SWE to clas-
sify the PCa and achieved an AUC of 0.85. Notably, the above two methods
required the biopsy pathology as reference to draw all region of interests (ROIs).
Recently, deep learning method has been applied to analyze TRUS videos for
identifying csPCa. Sun et al. [17] proposed a prostate mask guided hierarchi-
cal framework to identify csPCa, and achieved an AUC of 0.85 in the external
validation set.

In this study, we propose a multi-modality TRUS video classification net-
work for the accurate identification of csPCa patients. Inspired by the multi-
task learning strategy, a limited number of segmentation masks of csPCa are
reconstructed based on biopsy pathology (see Fig. 1) and employed to train an
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Fig. 2. Schematic overview of our method for identification of csPCa. Segmentation
serves as an auxiliary task for enhancing classification performance.

auxiliary task for enhancing the encoder of classification network. Experiments
on a large-scale multi-modality TRUS video dataset demonstrate the efficacy of
our method. Our contributions can be summarized as follows:

• To our knowledge, this is the first deep learning based framework for the
classification of csPCa in multi-modality TRUS videos. More important, the
framework generates visual class activation mapping (CAM) images, which
may offer valuable guidance for TRUS-guided targeted biopsies.

• To better leverage the multi-modality information, we propose an attention
module to optimize B-mode features, and fuse the features of B-mode and
SWE.

• We add segmentation task as an auxiliary task to enhance the classification
encoder, and employ a prototype correction module to address the issue of
limited csPCa segmentation masks.

2 Method

The proposed framework is illustrated in Fig. 2. Two 3D ResNet-50 [7] are em-
ployed to extract features from B-mode and SWE respectively and perform the
classification task. We employ a dimensional attention module to refine the ex-
tracted features from B-mode and adopt an adaptive spatial attention module
to fuse the features from two modalities (Fig. 3 left). Furthermore, we add a
3D U-Net decoder [4] with skip-connection to perform the segmentation task.
The segmentation task serves as an auxiliary task to enhance the encoder. Given
the limited availability of csPCa masks, we train the segmentation network in a
few-shot paradigm (Fig. 3 right).

2.1 Dimensional Attention Module

To enforce the network’s attention towards the csPCa regions, we introduce a
dimensional attention module [20], as shown in the left of Fig. 3. It utilizes
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Fig. 3. Architectures of the attention module and the prototype correction module.

dimension-wise attention to re-weight the features and fuses the re-weighted fea-
tures afterwards. Specifically, FX ∈ RH×W×T×C can be viewed as H feature
cubes along the first dimension and same for other dimensions, where FX de-
notes B-mode features, H, W , T indicate the dimension sizes, and C is the
channel number. For each feature cube, we first apply average pooling along the
three different dimensions then obtain three vectors FH ∈ RH , FW ∈ RW and
FT ∈ RT . Subsequently, squeeze-and-excitation [8] is employed to compute the
attention scores:

sD = σ(FC(FD)), D ∈ {H,W, T}, (1)

where FC is fully connected layer and σ is sigmoid operation. Then we re-weight
FX by the attention scores and fuse them together.

2.2 Adaptive Spatial Attention Module

Abnormal hypoechogenicity in B-mode [14] and abnormal stiff regions in SWE [1]
can be considered as an indicator of csPCa. Motivated by recent advancements
in attention mechanisms for feature aggregation [9,18], we introduce an adaptive
spatial attention module to aggregate features from two modalities in pixel-level.

As shown in Fig. 3 (a), we first compute the element-wise product of the
features FX (B-mode) and FE (SWE). Then the computed features are concate-
nated with the modality-specific features and passed through the convolutional
blocks (Conv3d, instance norm, sigmoid) to provide modality-specific attention
weights. These attention weights from two modalities are then normalized by
the softmax operation. Subsequently, we multiply the attention weights with
the corresponding modality feature maps to generate the fused feature maps
F̂ . As depicted in Fig. 2, F̂ are subsequently integrated back into the SWE
branches. For the B-mode branches, F̂ are concatenated with the output of the
dimensional attention module, and then passed through the convolutional block
(Conv3d, instance norm, ReLU) to generate F̂X before integration.
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2.3 Few Shot Segmentation for csPCa

Considering the interplay between the tumor classification and segmentation
tasks [3, 22], we add the segmentation task as an auxiliary task to assist the
classification network to extract more discriminative features. Due to the limited
availability of csPCa masks, we also introduce a prototype correction module to
extract representative prototypes of csPCa.

As shown in Fig. 2, we add a 3D U-Net decoder with skip-connection to
perform the segmentation task. Specifically, we denote the csPCa set with seg-
mentation masks as support set (Xsupport, Ysupport) and the csPCa set without
masks as query set Xquery. For the non-csPCa set, we denote it as Xneg.

For the classification task, the loss function is defined as:

Lcls = −Ycls log(ŷcls)− (1− Ycls) log(1− ŷcls), (2)

where ŷcls is the classification prediction of the network and Ycls represents the
classification label.

For the support set in the segmentation task, we minimize the cross entropy
loss:

Lseg_support = −Ysupport log(ŷseg)− (1− Ysupport) log(1− ŷseg), (3)

where ŷseg denotes the predicted probability map for Xsupport. Since the non-
csPCa set does not contain csPCa regions, we employ zero supervision for its
segmentation:

Lseg_neg = − log(1− ŷseg). (4)

For the query set, we adopt the few shot segmentation paradigm [5,11] to gener-
ate pseudo label and use them to supervise the network training. Concretely, we
perform mask average pooling (MAP) operation within the csPCa mask Ysupport

and compute support prototype Ps from the features of Xsupport:

Ps =
1

K

K∑
k=1

MAP(fθ(Xk
support), Y

k
support)

=
1

K

K∑
k=1

∑
F k
support · Y k

support∑
Y k
support

,

(5)

where K denotes the number of Xsupport, fθ denotes the encoder and Fsupport

are the extracted support features. Then we generate the cosine similarity maps
between extracted query features Fquery and support prototype Ps:

Mquery = softmax(sim(Fquery, Ps)), (6)

where sim(·, ·) is the cosine similarity function, and Fquery = fθ(Xquery).
However, the support prototype Ps are biased to represent the csPCa class

due to the limited number of csPCa masks. We introduce a prototype correc-
tion module (PCM) to refine the support prototype without introducing extra
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training parameters. As shown in Fig. 3 (b), we generate the query prototype
based on the similarity maps Mquery and the query features Fquery, and then
fuse them with the support prototype Ps to obtain the fused prototype Pf :

Pf =
1

2
(MAP(Fquery,Mquery) + Ps). (7)

Finally, we rank the similarity and select the top 100 points as pseudo label,
with half chosen from the foreground similarity map and the other half from the
background similarity map. Then we minimize the cross entropy at pixel-level:

Lseg_query = − 1

|P|
∑
jp∈P

log(Ŷseg(jp))−
1

|N |
∑

jn∈N

log(1− Ŷseg(jn)), (8)

where P denotes the set of points sampled as foreground, N denotes the set of
points sampled as background.

In summary, we employ the sum of the classification loss and the segmenta-
tion loss to train the network:

L = Lcls + Lseg_support + α · Lseg_query + β · Lseg_neg, (9)

where α and β are weighting coefficients.

3 Experiments

Dataset. We performed experiments on an in-house multi-modality TRUS
video dataset collected from the Cancer Center of Sun Yat-Sen University. This
study included a cohort of 512 patients who underwent B-mode ultrasound,
SWE, and prostate biopsy procedures. Among them, 346 patients were diag-
nosed with csPCa, while 166 presented with non-csPCa (BPH or cisPCa). We
randomly employed 404 scans (275 with csPCa) for training, and 108 scans (71
with csPCa) for testing. The TRUS videos were resized to 200 × 144 × 144 for
reducing computational cost. The intensities of B-mode within each video were
normalized to [0, 1]. The SWE images were underwent grayscale reconstruction
according to [21].

The segmentation annotation of csPCa is very difficult to obtain. Firstly,
pathologists examined specimens under a microscope and identified the spatial
location of the csPCa on TRUS. Subsequently, ultrasound radiologists used it as
a reference to annotate the locations of cancerous lesions. Segmentation masks
of csPCa in 4 scans were manually annotated by ultrasound radiologists using
ITK-SNAP. These 4 labeled samples in training set were used as support set
(Xsupport, Ysupport), and 271 unlabeled positive samples were query set Xquery.

Implementation Details. The method was implemented on PyTorch, using
an NVIDIA RTX8000 GPU with 48G memory. The network was optimized by
a stochastic gradient descent optimizer for 200 epochs, with an initial learning
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Table 1. Comparison of different methods (best results are highlighted in bold).

B-mode SWE Attention Multi-task PCM AUC F1 Acc Sen Spe

✓ 0.74 0.81 0.68 0.99 0.08
✓ 0.59 0.80 0.68 0.97 0.11

✓ ✓ 0.79 0.81 0.71 0.87 0.41
✓ ✓ ✓ 0.83 0.86 0.79 0.93 0.51
✓ ✓ ✓ ✓ 0.84 0.86 0.81 0.87 0.68
✓ ✓ ✓ ✓ ✓ 0.86 0.87 0.81 0.86 0.73

Sun et al. [17] w/o prostate mask 0.78 0.80 0.69 0.55 0.95

Fig. 4. Comparison of ROC curves for different methods on the testing set.

rate of 0.0001. The ploy learning policy was used, (1−epoch/200)0.9. To address
the class imbalance issue, the batch size was set to 2, with each batch consisting
of a csPCa and a non-csPCa. For the loss function, α and β were set to 0.001
and 0.1, respectively.

Quantitative and Qualitative Results. To evaluate the classification per-
formance of our framework, we employed five evaluation metrics: area under
the ROC curve (AUC), F1-score (F1), accuracy (Acc), sensitivity (Sen), and
specificity (Spe). Higher scores of these metrics show better performance.

To evaluate the impact of each component in our method, we conducted
ablation analyses on single modality, where we used only B-mode or SWE infor-
mation. Additionally, we performed ablation experiments to assess the influence
of the attention module, auxiliary task, and prototype correction module. These
ablation studies allowed us to determine the contribution of each component
in improving the classification outcomes. Quantitative results are listed in Ta-
ble 1 and the ROC curves are depicted in Fig. 4. Our method achieved an AUC
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Fig. 5. Nine examples illustrating TRUS frames and their corresponding CAM gener-
ated by our network. The ultrasound radiologists verified that the model’s predictions
of suspicious tumor regions were in agreement with the spatial locations provided by
the pathologists.

of 0.86, F1-score of 0.87, accuracy of 0.81, sensitivity of 0.86 and specificity of
0.73, demonstrating its strong performance in csPCa classification. It can be
observed that concatenating the two modalities (B-mode and SWE) resulted
in a notable improvement in AUC compared to using either modality individ-
ually. This proves the importance of leveraging the complementary information
provided by multiple modalities to improve the classification. Moreover, the ad-
dition of the fusion module improved the accuracy of the model, and the addition
of the segmentation task and the PCM has largely improved the specificity of
the model. We also compared our method with the most relevant work by [17].
Our method outperformed [17]’s AUC by 0.08 when its prostate segmentation
module was excluded. Even without adding the csPCa segmentation task, our
method outperformed [17] by 0.05 in terms of AUC.

To identify the frames and specific locations within TRUS videos that played
a significant role in network’s prediction of csPCa, we utilized gradient-weighted
class activation mapping [15]. This approach allowed us to generate heat maps,
visualizing the regions of interest and their contribution to the prediction, as
shown in Fig. 5. Ultrasound radiologists confirmed that the suspicious tumor
regions predicted by the model were consistent with the spatial location offered
by pathologists. This finding suggests the potential feasibility of TRUS-guided
targeted biopsy, by leveraging the CAM images generated using our method.

4 Conclusion

We introduce a multi-task learning framework for the recognition of csPCa in
multi-modality TRUS. The primary attribute is to fully exploit B-Mode and
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SWE image information through the attention module and use few shot seg-
mentation to help the encoder learn more representative features. Experimental
results demonstrate our proposed framework is effective in classifying and posi-
tioning csPCa. This may provide useful information to assist doctors conducing
TRUS-guided targeted biopsy. Future work is to validate our proposed method
on a large external dataset to evaluate its accuracy and generalization perfor-
mance.
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