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Abstract. Multi-modal magnetic resonance imaging (MRI) provides
rich, complementary information for analyzing diseases. However, the
practical challenges of acquiring multiple MRI modalities, such as cost,
scan time, and safety considerations, often result in incomplete datasets.
This affects both the quality of diagnosis and the performance of deep
learning models trained on such data. Recent advancements in generative
adversarial networks (GANs) and denoising diffusion models have shown
promise in natural and medical image-to-image translation tasks. How-
ever, the complexity of training GANs and the computational expense as-
sociated with diffusion models hinder their development and application
in this task. To address these issues, we introduce a Cross-conditioned
Diffusion Model (CDM) for medical image-to-image translation. The core
idea of CDM is to use the distribution of target modalities as guidance
to improve synthesis quality while achieving higher generation efficiency
compared to conventional diffusion models. First, we propose a Modality-
specific Representation Model (MRM) to model the distribution of tar-
get modalities. Then, we design a Modality-decoupled Diffusion Network
(MDN) to efficiently and effectively learn the distribution from MRM. Fi-
nally, a Cross-conditioned UNet (C-UNet) with a Condition Embedding
module is designed to synthesize the target modalities with the source
modalities as input and the target distribution for guidance. Extensive
experiments conducted on the BraTS2023 and UPenn-GBM benchmark
datasets demonstrate the superiority of our method.

Keywords: Cross-conditioned model · Diffusion model · Multi-modal
MRI · Medical image to image translation.

1 Introduction

Multi-modal magnetic resonance imaging (MRI) is crucial for the comprehen-
sive analysis and diagnosis of diseases and is routinely used in clinical set-
tings [27,28,37,14,16,31,33,30]. They provide rich, complementary information
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Fig. 1: Comparison between the conventional Diffusion model (a) and our method
(b). Our method replaces the time-consuming denoising UNet with a light Dif-
fusion network, which achieves higher efficiency.

for analyzing brain tumors. Specifically, for gliomas, the commonly used MRI
sequences including T1-weighted (T1), post-contrast T1-weighted (T1Gd), T2-
weighted (T2), and T2 Fluid Attenuation Inversion Recovery (T2-FLAIR) im-
ages [32,18]. Each sequence plays a varying role in distinguishing between the
tumor, peritumoral edema, and the tumor core. However, obtaining multiple
modalities in clinical settings can be challenging due to factors such as scan
costs, limited scan time, and safety considerations. Consequently, the absence
of certain crucial modalities can have a detrimental impact on the quality of
diagnosis and treatment. Furthermore, deep learning models based on multi-
modal MRIs also suffer from decreasing performance when crucial modalities
are missing in training data.

Generative adversarial networks (GANs) [9,38,5,15] have been extensively
explored for natural image-to-image translation. However, these methods are
difficult to apply directly to medical imaging due to the domain gap between
natural and medical images. To address this issue, RegGAN [11] uses an addi-
tional registration network to fit the misaligned noise distribution. ResViT [3,17]
proposes a transformer-based central bottleneck module designed to distill task-
critical information while preserving both global and local information within
high-dimensional medical images. Although there has been significant develop-
ment in these methods, the training process of GANs is not stable.

Recently, denoising diffusion models [6,35,25,8,20,36], which are capable of
offering better details, have shown significant success in various generative tasks.
Dhariwal [4] et al. propose the first diffusion model with conditional input and
achieves better performance compared to GANs. However, diffusion models in-
troduce additional computational costs since they must sample multiple times
during inference. RCG [12] introduces the concept of self-conditioned image syn-
thesis for the first time and outperforms conventional diffusion models in terms
of accuracy and efficiency. However, RCG cannot be directly applied to image-
to-image translation tasks due to its self-conditioning mechanism. Moreover, the
encoder and decoder pre-trained on natural images in RCG are not well-suited
for medical images.

In this paper, we propose a Cross-conditioned Diffusion Model for medical
image-to-image translation, named CDM. Instead of directly sampling the tar-
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Fig. 2: An overview of the proposed Cross-conditioned Diffusion Model (CDM).
First, we introduce the Modality-specific Representation Model (a) to learn
the distribution of target modalities. Then, the Modality-decoupled Diffusion
Network (b) is employed to learn the target distribution. Finally, the Cross-
conditioned UNet (c) incorporates the source modalities and samples the target
distribution as guidance to generate the target modalities.

get modalities in the image domain like the conventional diffusion model, CDM
first samples the distribution of target modalities in latent variable space, and
then this distribution is used as a condition to generate the target modalities
in the image domain. First, we design a Modality-specific Representation Model
(MRM) to learn the distribution of target modalities. Subsequently, as illustrated
in Fig. 1, we replace the time-consuming denoising UNet with a light Diffusion
network, called Modality-decoupled Diffusion Network (MDN), which achieves
higher efficiency in both training and inference and model the target distribu-
tion from MRM. Finally, we propose a Cross-conditioned UNet (C-UNet) with a
Condition Embedding module to receive the source modalities and distribution
sampled by MDN as input to generate the target modalities. Extensive experi-
ments on BraTS2023 [19,1,10] and UPenn-GBM [2,13] datasets demonstrate the
superiority of our proposed CDM.

2 Method

Our CDM primarily consists of three components: 1) the modality-specific rep-
resentation model, which learns the distribution of target modalities; 2) the
modality-decoupled diffusion network, designed for improved feature represen-
tation and efficiency; and 3) the cross-conditioned UNet model, which generates
target modalities from source modalities and sampled target distribution.

2.1 Representation Learning for Target Modalities

Modality-specific Representation Model (MRM) Training In RCG, both
the feature encoder and decoder are pre-trained on natural images, which results
in reduced performance when processing medical images. We design a modality-
specific representation model consisting of a feature encoder FE and decoder
FD. Similar to SimMIM [29], as shown in Fig. 2 (a), we randomly mask some
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Fig. 3: An overview of Modality-decoupled Diffusion Network (a) and Cross-
conditioned Emebedding (b).

patches in each target modality separately and concatenate them at the chan-
nel dimension as input. Then, the MRM learns to restore the original target
modalities, supervised by the L2 loss function.

LMRM =
1

|R|
∑
r∈R

||pr − p̂r||2, (1)

where R denotes masked patches in target modalities, |R| denotes the number
of masked patches, pr and p̂r represent the prediction values and input values.

Modality-decoupled Diffusion Network (MDN) Training The core of
cross-conditioned image generation lies in using the target distribution sampled
by the diffusion model to guide the pixel generation process for target modal-
ities. To achieve this, we adopt a light modality-decoupled diffusion network
to efficiently sample the target distribution. As shown in Fig. 3 (a), the MDN
first employs two separate linear layers to decouple the noised target distribu-
tion yt. Then, multiple residual blocks are utilized to eliminate the noise and
generate target distribution y0. Each residual block consists of an input layer,
a timestep embedding layer, and an output layer, where each layer comprises
a LayerNorm [34], a SiLU [22], and a linear layer. The MDN follows Denoising
Diffusion Implicit Models (DDIM) [24] for training and inference. As shown in
Fig. 2 (b), during training, the target distribution y0 from feature encoder FE
is mixed with Gaussian noise ϵ over t ∈ {0, 1, ..., T} steps.

q (yt | y0) = N
(
yt;

√
ᾱty0, (1− ᾱt) ϵ

)
, (2)

where ᾱt =
∏t

s=0 αs =
∏t

s=0 (1− βs) and βs represent the noise schedule [6].
Then, the MDN learns to restore y0 from noised yt supervised by L2 loss function.
During inference, as shown in Fig. 2 (c), the target distribution y0 is predicted by
the MDN from a normal Gaussian noise yt, along with the sample schedule [24].

pθ (y0:T ) = p (yT )

T∏
t=1

pθ (yt−1 | yt) , (3)

where θ denotes the training parameters of the MDN.
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2.2 Cross-conditioned UNet (C-UNet)

To incorporate the generated target distribution into the UNet model, we pro-
pose a cross-conditioned UNet, featuring a cross-conditioned embedding module
designed to merge the target distribution with the input feature at each scale. As
depicted in Fig. 3 (b), for a layer in C-UNet, the input feature from source modal-
ities is fed into a convolution block, which consists of a LayerNorm, a SiLU, and
a 1 × 1 convolution layer, to obtain the feature representation. Simultaneously,
the generated target distribution is processed through an multi-layer perceptron
(MLP) [26] layer, consisting of two linear layers and a SiLU, to produce the dis-
tribution representation. The feature representation is then combined with the
distribution representation for fusion, and a down-sampling layer is utilized to
reduce the spatial dimensions of the fused feature.

The final synthesis loss LSyn consisting of mean square error is calculated on
the prediction Ŷ by the C-UNet and corresponding ground truth Y :

LSyn = ||Ŷ − Y ||2. (4)

3 Experiments

3.1 Datasets and Implementation

BraTS2023 dataset The BraTS2023 dataset [19,1,10] contains a total of 1,251
3D brain MRI volumes. For each patient, multi-parametric magnetic resonance
imaging (mpMRI) scans are available, including the four structural MRI scans:
native T1-weighted (T1), post-contrast T1 (T1-Gd), native T2-weighted (T2),
and T2 fluid attenuated inversion recovery (T2-FLAIR) scans.

UPenn-GBM dataset The UPenn-GBM dataset [2] is composed of 630 pa-
tients diagnosed with Glioblastoma Multiforme (GBM). Each volume also in-
cludes four modalities (namely T1, T1Gd, T2, and T2-FLAIR).
For both mentioned datasets, we denote T1Gd as T1c, and T2-FLAIR as T2f.
We partition the 3D image along the Z-axis into 2D images. The T1 and T2
modalities are utilized to generate the T1c and T2f modalities.

Implementation details Our model is implemented in PyTorch 2.1.0-cuda12.1.
During training, we resize each image to 256 × 256 and use a batch size of 12
per GPU for each dataset. We employ cross-entropy loss and adopt the Adam
optimizer with a learning rate of 1e-4 and a decay rate of 1e-5. We run 100 epochs
for all datasets. All experiments are conducted on a cloud computing platform
with NVIDIA A100 GPUs. For each dataset, we randomly allocate 70% of the
3D volumes for training, and the remaining 30% for testing.

3.2 Comparison with SOTA Methods

We compare our CDM with seven state-of-the-art synthesis methods, including
five CNN-based methods (Pix2pix [9], CycleGAN [38], GcGAN [5], CUT [21],
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Table 1: Quantitative comparison on BraTS2023 dataset

Methods
T1c T2f Avg

PSNR ↑ SSIM ↑ MAE ↓ PSNR ↑ SSIM ↑ MAE ↓ PSNR ↑ SSIM ↑ MAE ↓

Pix2pix [9] 27.05 0.858 0.0180 24.82 0.846 0.0250 25.93 0.852 0.0215
CycleGAN [38] 30.13 0.906 0.0120 26.85 0.883 0.0188 28.49 0.894 0.0154

GcGAN [5] 29.98 0.917 0.0129 25.98 0.872 0.0225 27.98 0.894 0.0177
CUT [21] 26.27 0.846 0.0181 23.54 0.819 0.0278 24.90 0.832 0.0229

RegGAN [11] 31.36 0.930 0.0109 29.13 0.917 0.0135 30.24 0.923 0.0122
ResViT [3] 31.46 0.932 0.0131 28.63 0.909 0.0166 30.04 0.920 0.0148
Diffusion [4] 31.98 0.930 0.0109 29.22 0.921 0.0155 30.60 0.925 0.0132

Ours 33.08 0.948 0.0098 30.76 0.934 0.0136 31.92 0.941 0.0117

Table 2: Quantitative comparison on UPenn-GBM dataset

Methods
T1c T2f Avg

PSNR ↑ SSIM ↑ MAE ↓ PSNR ↑ SSIM ↑ MAE ↓ PSNR ↑ SSIM ↑ MAE ↓

Pix2pix [9] 28.93 0.925 0.0145 29.81 0.903 0.0206 29.37 0.914 0.0175
CycleGAN [38] 30.85 0.951 0.0122 30.25 0.914 0.0210 30.55 0.932 0.0166

GcGAN [5] 30.75 0.952 0.0133 30.41 0.928 0.0209 30.58 0.940 0.0171
CUT [21] 30.74 0.950 0.0123 31.02 0.924 0.0187 30.88 0.937 0.0155

RegGAN [11] 27.71 0.916 0.0149 27.71 0.930 0.0163 27.71 0.923 0.0156
Resvit [3] 27.43 0.930 0.0138 24.58 0.905 0.0202 26.00 0.917 0.0170

Diffusion [4] 31.84 0.962 0.0112 32.42 0.944 0.0158 32.13 0.953 0.0135

Ours 33.04 0.967 0.0097 33.65 0.952 0.0138 33.34 0.959 0.0117

RegGAN [11]), one transformer-based method (ResViT [3]), and one diffusion-
based method (conditional diffusion model [4], denoted as ’Diffusion’ in all ta-
bles). For a fair comparison, we utilize public implementations of these meth-
ods to retrain their networks, generating their best synthesis results. The Peak
Signal-to-Noise Ratio (PSNR) [7], Structural Similarity Index (SSIM) [23], and
Mean Absolute Error (MAE) are adopted for quantitative comparison on the
BraTS2023 and UPenn-GBM datasets.

BraTS2023 Table 1 presents the PSNR, SSIM, and MAE scores for two modali-
ties (T1c and T2f), along with the averaged scores of all methods on BraTS2023.
Our CDM achieves the highest PSNR and SSIM scores for T1c and T2f, the low-
est MAE score for T1c, and ranks second in MAE for T2f. More importantly,
our method demonstrates superior quantitative performance, averaging 31.92 on
PSNR, 0.941 on SSIM, and 0.0117 on MAE, respectively. Furthermore, we con-
duct experiments comparing the latest Diffusion method with our method, while
our method outperforms the Diffusion method across all metrics.

UPenn-GBM In Table 2, we list PSNR, SSIM, and MAE scores of our network
and compared methods for T1c and T2f modalities on the UPenn-GBM dataset,
as well as the average metrics. Among all the comparison methods, the Diffusion
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Fig. 4: Visual comparisons of proposed CDM and other state-of-the-art methods.

Table 3: Ablation study for different modules on
BraTS2023 dataset.

Methods Condition Decouple PSNR ↑ SSIM ↑ MAE ↓

RCG ! 15.40 0.057 0.141
M1 29.41 0.907 0.0138
M2 ! 31.73 0.935 0.0127

Ours ! ! 31.92 0.941 0.0117

Table 4: Ablation study for different sampling
number Nsampling on BraTS2023 dataset.

Nsampling 10 20 30 40

PSNR ↑ 31.24 31.71 31.92 31.93
SSIM ↑ 0.926 0.933 0.941 0.940
MAE ↓ 0.0123 0.0123 0.0117 0.0116

has the highest average PSNR and SSIM scores of 32.13 and 0.953, as well as
the lowest MAE score of 0.0135. This performance is attributed to the strong
representational capabilities of diffusion model. In comparison, our method has
a 3.79%, 0.63%, and 13.33% improvement on PSNR, SSIM, and MAE scores,
respectively, achieving state-of-the-art performance.
Visual Comparisons Fig. 4 visually compares the synthesis results predicted
by our network and state-of-the-art methods on the BraTS2023 and UPenn-
GBM datasets. From these visualization results, we can find that our method
can more accurately synthesize the brain tumor regions than other methods and
maintain the most consistent style with the ground truth. The reason behind is
that our method is capable of learning modality-related information under the
guidance of the distributions of T1c and T2f modalities.

3.3 Ablation Study

The Effectiveness of Each Module Table 3 lists the methods with differ-
ent modules along with the average PSNR, SSIM, and MAE on T1c and T2f
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Fig. 5: The ablation studies for efficiency and parameter scale.

modalities. As indicated in Table 3, RCG has the lowest PSNR and SSIM scores,
alongside the highest MAE score. This method employs the encoder pre-trained
on natural images, which is not well-suited for medical imaging. M1 represents
our basic method, which only contains a conventional UNet model. In compari-
son to M1, M2 integrates the distribution of target modalities (T1c and T2f) as
a condition to guide the synthesis process, achieving an improvement of 7.88%,
3.08%, and 7.97% on PSNR, SSIM, and MAE, respectively. Finally, our method
combines both conditional input and the MDN, achieving the state-of-the-art
performance of 31.92, 0.941, and 0.0117 across the three metrics.

The Optimal Sampling Number To determine the best sampling number
Nsampling, we conduct an experiment in which we increase the sampling number
from 10 to 40 with a stride of 10, and evaluate the average PSNR, SSIM, and
MAE for T1c and T2f. As shown in Table 4, when the sampling number reaches
40, the SSIM score decreases slightly from 0.941 to 0.940, and the improvements
of PSNR and MAE are minimal. Considering the increase in computational cost
from Nsampling = 30 to Nsampling = 40, we select Nsampling = 30 as our default
setting.

The High Efficiency of Our CDM Fig. 5 (a) displays the frames per second
(FPS) and PSNR score for both Diffusion and our CDM across different sample
number Nsample on the BraTS2023 dataset. The larger the bubble size is, the
higher the average PSNR for T1c and T2f. It is observed that our CDM surpasses
the Diffusion in terms of both FPS and PSNR at different Nsample, indicating
superior efficiency and synthesis quality.

Comparison on Parameter Scale We compare our CDM with state-of-the-
art methods in terms of parameter scale, PSNR, and SSIM on the BraTS2023
dataset. As shown in Fig. 5 (b) and (c), our method achieves new state-of-the-art
results while maintaining a smaller parameter scale.

4 Conclusion

In this paper, we propose a novel paradigm for medical image-to-image trans-
lation, named CDM. The main idea of CDM is to use a modality-specific rep-
resentation model (MRM) to learn the distribution of target modalities and a
modality-decoupled Diffusion network (MDN) to model the distribution from
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MRM while achieving higher efficiency. Finally, we propose a cross-conditioned
UNet (C-UNet) to receive the source modalities as input and the distribution
sampled by MDN as guidance to generate the target modalities. Extensive ex-
periments on BraTS2023 [19,1,10] and UPenn-GBM [2] datasets demonstrate
the superiority of our proposed CDM. The ablation studies are conducted to
verify the effectiveness of each module and to demonstrate the advantages of
our method in terms of efficiency and parameter scale.
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