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Abstract. Since its introduction, UNet has been leading a variety of
medical image segmentation tasks. Although numerous follow-up stud-
ies have also been dedicated to improving the performance of standard
UNet, few have conducted in-depth analyses of the underlying interest
pattern of UNet in medical image segmentation. In this paper, we explore
the patterns learned in a UNet and observe two important factors that
potentially affect its performance: (i) irrelative feature learned caused
by asymmetric supervision; (ii) feature redundancy in the feature map.
To this end, we propose to balance the supervision between encoder and
decoder and reduce the redundant information in the UNet. Specifically,
we use the feature map that contains the most semantic information (i.e.,
the last layer of the decoder) to provide additional supervision to other
blocks to provide additional supervision and reduce feature redundancy
by leveraging feature distillation. The proposed method can be easily in-
tegrated into existing UNet architecture in a plug-and-play fashion with
negligible computational cost. The experimental results suggest that the
proposed method consistently improves the performance of standard UN-
ets on four medical image segmentation datasets. The code is available
at https://github.com/ChongQingNoSubway/SelfReg-UNet
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1 Introduction

Medical image segmentation is a pivotal application for computer-aided diagnosis
and image-guided systems. Recently, deep learning has ascended as the leading
method in this domain, primarily attributed to the landmark contribution of
UNet [19]. UNet defines a generic segmentation network architecture by lever-
aging the encoder to project semantic information into low-level features and
the decoder to progressively upsample semantic features to segmentation masks.
Many of its follow-up works [4,23] have expanded this idea within the context of
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convolutional neural networks (CNN). Recently, numerous studies [3,1,27,22,17]
have introduced vision transformer (ViT) [7] to address the limitations of CNN
by using a self-attention mechanism. Although ViT has a large receptive field
and captures long-range dependencies between different image patches, it strug-
gles to preserve fine-grained local context due to the lack of locality. To mitigate
this problem, methods [8,18] that bridge the gap between CNNs and ViTs (i.e.,
hybrid models) have been introduced in UNet design. Note that these methods
also bring much computational complexity and the number of parameters. Over-
parameterization is a common issue in deep learning, often leading to feature
redundancy and poor feature representation [6,12,13]. However, this issue has
not been formally investigated or considered by previous medical segmentation
models.

Beyond the aforementioned methods, some efforts focus on optimizing the
architectural structures of the UNet. Following this vein, Att-UNet [15] proposes
an attention-based skip connection to suppress irrelevant features. UNet++ [31]
replaces the standard skip connections (i.e., concatenation/addition) with the
nested dense skip pathways. UCTransNet [24] thoroughly analyzes the effect of
different skip connections and proposes a channel transformer to replace the
conventional skip connection. These methods only investigate the information
flow from encoder to decoder by manipulating the skip-connection. However,
none of them have explored how to inform the encoder effectively via the learned
features in the decoder, while our investigation reveals this information flow
deserves more attention in a UNet. This is mainly because the decoder receives
more supervision than the encoder, which provides a natural way to filter out
irrelevant information.

In this paper, we perform empirical studies in two representative UNets (i.e.,
standard UNet [19] and SwinUNet [1]). Our analyses reveal two key findings:
(i) Redundant features exist in the feature channel, with the shallow channels
exhibiting more diversity than deep channels in a feature map; (ii) Asymmetric
supervision between the encoder and the decoder in a UNet leads to semantic
loss. This phenomenon diverges from observed trends in other computer vision
tasks [29,26], where deep features exhibit to be more discriminative and can bet-
ter localize the target of interest. To mitigate those issues, we introduce semantic
consistency regularization and internal feature distillation to address semantic
loss from asymmetric supervision and feature redundancy, respectively. This in-
volves using more accurate semantics to supervise the other blocks and distilling
information from shallow to deep channels in the feature map.

Contributions: (i) Our exploration uncover asymmetric supervision and fea-
ture redundancy in UNet, suggesting a novel direction for future model design.
(ii) We suggest an orthogonal way to help the UNet discard irrelevant infor-
mation and better preserve semantics by proposing a symmetric supervision
regularization mechanism and leveraging the feature distillation. (iii) The pro-
posed methods can be seamlessly integrated into existing UNet frameworks (e.g.,
CNN-UNet and ViT-UNet), offering performance gains with minimal extra cost.
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Fig. 1. (a)UNet structure. (b) The attention map in ViT/CNN-based UNet (For more
examples, refer to Appendix A) (c) ViT/CNN-based UNet feature similarity matrix
between shallow (Left) and deeper channel (Right).

2 Method

Preliminary. In this paper, we take a standard UNet defined in [19] with a
depth of 5 as an example. Without loss of generality, we consider a unified UNet
structure for both CNN-based UNet [19] and ViT-based UNet [1] in our in-
vestigation, which consists of an input and output projection block, 4 encoder
and decoder blocks, as well as a bottleneck (see Fig. 1(a)). For this purpose,
we first define the patch embedding block in a ViT-UNet as the combination of
the input projection block and the first encoder block. We then define the last
up-sampling block in a ViT-UNet (i.e., last patch expanding in SwinUNet [1])
as the last decoder block. Each encoder/decoder block of the defined UNet com-
prises L = 2 consective convolution/transformer blocks. The output projection
block is a convolutional layer that maps the last feature map to a segmenta-
tion mask. For notation, we use E(l)m / D(l)m and B(l) to denote the l-th layer of
the m-th encoder/decoder block and bottleneck, respectively. Accordingly, the
corresponding feature map is denoted as F l

m following order from encoder to
decoder (E(1)1 , E(2)1 ,.B(1)..,D(2)2 ,D(1)1 ).

2.1 Analysis on features learned in a UNet

We conduct analyses on features learned in UNets by employing two com-
monly used techniques: (i) gradient-weighted class activation mapping (Grad-
CAM) [20]; (ii) similarity analysis in a feature map.
Asymmetric supervision in UNet. We observed two interesting phenomena
as evident in Fig. 1(b): (i) The learning patterns exhibit an asymmetry between
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Fig. 2. Demostrating the operation based on feature for (a) semantic consistency reg-
ularization and (b) internal feature distillation.

the encoder and the decoder. The decoder could approximately locate some
ground truth segmentation regions, and the encoder tends to capture unrelated
information (E3, E4), dispersing the interest of patterns towards the boundaries.
(ii) In the decoder, the block (D1) located further to the end demonstrates an
accurate understanding of ground truth segmentation. Meahwhile, the blocks
(D2,D4) learned the irrelevant information. The main reason lies in the different
intensity of supervision signals each block receives. When tracing back from
the output projection directly supervised by the ground truth, the supervision
signal progressively diminishes. It leads to semantic loss, with some blocks (e.g.,
E1,E3,E4,B) in the encoder even activating regions unrelated to segmentation.
Redundant Features in UNet. Empirical investigations have shown that
overparameterized CNN/ViT models tend to learn redundant features, leading
to poor visual concepts [6,12,13]. Taking the output of E1 as an illustration, we
calculate the feature similarity matrices in the channel dimension at both the
shallow and the deep levels. As depicted in Fig. 1(c), we observe two phenomena
in both ViT/CNN-based UNets: (i) Feature redundancy is prevalent in deep
layers, with a high similarity matrix indicating the learning of similar features
across channels. (ii) The shallow layers exhibit significant diversity, evidenced
by a low similarity matrix. The over-parameterization that exists in UNet, akin
to that in other networks, underlies these phenomena. The resultant redundant
features often come with task-irrelevant visual features, leading to performance
degradation and unnecessary computation overhead.

2.2 Solutions

Semantic Consistency Regularization. Various studies have been proposed
to tackle the loss of semantics in natural images by employing strategies such as
knowledge distillation and feature alignment, with the goal of leveraging accurate
features to guide those less informative ones [2,13,9,5,28]. Inspired by these works
in natural images, we propose to use the feature map that contains the most
semantic information (i.e., D1 as observed) to provide additional supervision to
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the rest blocks in a UNet. As a result, we propose a generic paradigm, termed
semantic consistency regularization (SCR), to balance the supervision between
the encoder and the decoder. For simplicity, we demonstrate our idea using
the feature distillation mechanism in [2,13] due to its popularity and simplicity
(given as a mean square loss); while other knowledge distillation methods can
be alternatives (given as KL divergence). To this end, we define the proposed
SCR as

LSCR =
1

|M − 1||I|

M−1∑
m=1

∑
I∼I

∥RCS(F i
m)−AvgPool(Ffinal)∥2,

Where Ffinal is the feature map located at the last decoder block (D1), and Fm
i

is all the feature map situated in the ith layer of the mth block (E(1)1 , E(2)1 ,...,
D(2)3 ,D(1)2 ,D(2)2 ) except the D1. To align features in channel and spatial dimensional,
we employed an average-pooling and random channel selection operation (RSC)
as shown in Fig 2.(a). It is worth noting that the channel selection does not
introduce extra modules [9,5,28], reducing computation and semantic conflicts.
The L2 norm is used as a distance metric.
Internal Feature Distillation. To solve the feature redundancy problem, some
channel shrinkage methods have been proposed related to fields of model filter
pruning, which leverage the Lp norm penalty to induce a sparsity prior on chan-
nel salience [30,25,14]. Inspired by this, we employed the Lp norm for information
distillation from shallow (top-half channel feature) to deep (bottom-half channel
one), which guides the deeper features learned the useful context information.
It can be formulated as:

LIFD =
1

|M ||I|

M∑
m=1

∑
I∼I

∥F̃ i
m − F i

m∥p,

where F k
i denotes all feature maps situated in the ith layer of the mth block

(E(1)1 , E(2)1 ,..., D(1)2 ,D(2)2 ,D(1)1 ), F̃ is the deep channel feature, and F was shallow
channel feature. As shown in Fig 2.(b), we partitioned the channels into top
and bottom halves, using this division as boundaries to ensure the same number
of features in both shallow and deep. Following [13,25,30], we employed the
L2 norm. Compared with methods that introduced extra modules for reducing
redundancy [16,11], the LIFD is simple and cost-free.
Objective Function. The total loss is weighted of LSCR and LIFD with the
standard combination of cross-entropy and dice losses Lcd [24,8,1,19] that is
evaluated between the prediction and the ground truth segmentation results.

L = Lcd + λ1LSCR + λ2LIFD,

where λ1 and λ2 are balance parameters.
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3 Experiments and Results

3.1 Dataset

Synapse Multi-Organ Segmentation. Following [1,3,8], the Synapse dataset
comprises 30 cases comprising 3779 axial abdominal clinical CT images. Of these,
18 samples are designated for training, while 12 are reserved for testing. We eval-
uate performance on eight abdominal organs using the average Dice Similarity
Coefficient (DSC) as the evaluation metric.
Automated cardiac diagnosis challenge dataset. The ACDC dataset com-
prises 100 cardiac MRI scans from diverse patients, each labeled with left ven-
tricle (LV), right ventricle (RV), and myocardium (MYO). Following [3,18], we
allocate 70 cases (1930 axial slices) for training, 10 for validation, and 20 for
testing. We evaluate our method using the DSC as the evaluation metric.
Nuclear segmentation and Gland segmentation. The Gland segmentation
dataset (GlaS) [21] has 85 images for training and 80 for testing. The Multi-
Organ Nucleus Segmentation (MoNuSeg) dataset [10] has 30 images for train-
ing and 14 for testing. Following [24], we perform the three times 5-fold cross-
validation results on GlaS and MoNuSeg datasets. The average DSC and IoU
are used as evaluation metrics.

Fig. 3. Comparison of segmentation performance in Synapse dataset.

3.2 Experiment settings

We evaluate the effectiveness of our proposed loss on both SwinUNet and UNet
in these four datasets, and the training setups (i.e., batch size, optimizer, learn-
ing rate, etc.) are consistent with [1]. All experiments were conducted with an
input image size of 224 x 224 and the same data augmentation and preprocessing
in [8,18,24], using an Nvidia GTX3090 with 24GB of memory for training. Fol-
lowing in [1,19], pre-trained weights from ImageNet were employed in SwinUNet,
while UNet was trained from scratch.
Comparison with state-of-the-art methods. We compare our methods with
recent SOTA models, including R50 UNet [3], Att-UNet [15], UNet++ [31], Tran-
sUNet [3],swinUNet [1], LeViT-UNet [27], DeepLabv3 [4], HiFormer [8], PVT-
cascade [18], UCTransNet [24], MedT [22].
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Table 1. Comparison with SOTA methods on Synapse multi-organ CT dataset. ∆
denotes the improvement gain (%) by comparing with the original method.

Methods Average DSC Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach
R50 U-Net 74.68 87.74 63.66 80.60 78.19 93.74 56.90 85.87 74.16
U-Net 76.85 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58
R50 Att-UNet 75.57 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95
Att-UNet 77.77 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75
TransUNet 77.48 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
SwinUNet 79.13 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
LeViT-UNet 78.53 78.53 62.23 84.61 80.25 93.11 59.07 88.86 72.76
DeepLabv3 77.63 88.04 66.51 82.76 74.21 91.23 58.32 87.43 73.53
HiFormer 80.29 85.63 73.29 82.39 64.84 94.22 60.84 91.03 78.07
Our + UNet 80.34 88.74 71.78 85.32 80.71 93.80 62.22 84.78 75.39
∆ +3.49 -0.33 +2.06 +7.55 +12.11 +0.37 +8.24 −1.89 −0.19

Our + SwinUNet 80.54 86.07 69.65 85.12 82.58 94.18 61.08 87.42 78.22
∆ +1.41 +0.60 +3.12 +1.84 +2.97 −0.11 +4.50 −3.24 +1.62

Table 2. Comparison of different
methods in ACDC dataset.

Methods Avg DSC RV Myo LV
R50 + AttnUNet 86.75 87.58 79.2 93.47
ViT + CUP 81.45 81.46 70.71 92.18
UNet 89.68 87.17 87.21 94.68
TransUNet 89.71 86.67 87.27 95.18
SwinUNet 88.07 85.77 84.42 94.03
LeViT-UNet 88.21 85.56 84.75 94.32
Hiformer 90.82 88.55 88.44 95.47
PVT - CASCADE 90.45 87.20 88.96 95.19
Our + UNet 91.43 88.92 89.49 95.88
∆ +1.75 +1.75 +2.28 +1.20

Our + SwinUNet 91.49 89.49 89.27 95.70
∆ +3.42 +3.72 +4.85 +1.67

Table 3. Comparison of different methods in
Glas and MoNuSeg datasets.

Method Glas MoNuSeg
DSC (%) IOU (%) DSC (%) IOU (%)

U-Net 85.45±1.25 74.78±1.67 76.45±2.62 62.86±3.00
UNet++ 87.56±1.17 79.13±1.70 77.01±2.10 63.04±2.54
AttUNet 88.80±1.07 80.69±1.66 76.67±1.06 63.47±1.16
MRUNet 88.73±1.17 80.89±1.67 78.22±2.47 64.83±2.87
TransUNet 88.40±0.74 80.40±1.04 78.53±1.06 65.05±1.28
MedT 85.92±2.93 75.47±3.46 77.46±2.38 63.37±3.11
SwimUNet 89.58±0.57 82.06±0.73 77.69±0.94 63.77±1.15
UCTransNet 90.18±0.71 82.96±1.06 79.08±0.67 65.50±0.91
Our + UNet 90.93±0.20 84.08±0.41 80.18±0.19 67.07±0.29
∆ +5.48 +9.3 +3.73 +4.21

Our + SwinUNet 91.62±0.16 85.29±0.30 79.38±0.15 65.87±0.21
∆ +2.04 +3.23 +1.69 +2.10

3.3 Results

The results are shown in Table 1 for Synapse dataset, Table 2 for ACDC dataset,
and Table 3 for Glas and MoNuSeg datasets. The main observation is our pro-
posed loss is effective and can lead to substantial gains. Specifically, by utilizing
our proposed loss, UNet obtains a 3.49%, 1.75%, 5.48%, and 3.73% improvement
in average DSC in the four datasets, respectively. Likewise, in these four datasets,
SwinUNet can obtain a 1.41%, 3.42%, 2.04%, and 1.69% DSC improvement.

Fig. 4. Comparison of segmentation performance in Glas and MoNuSeg dataset.
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Fig. 5. Ablation study for balance parameters λ and loss based on Glas and MoNuSeg.

Consequently, our enhanced models can outperform the previous State-of-
the-art (SOTA) methods. For example, our enhanced UNet and SwinUNet ex-
hibit improvements of 0.05% and 0.25% in average DSC, respectively. Com-
pared with Hiformer, TransUNet, UNet, and swinUNet [19,1,8,3], the perfor-
mance gains of our enhanced models primarily derive from tackling challenging
organ segmentation tasks such as the gallbladder, left kidney, right kidney and
pancreas, as illustrated in Fig 3 and Table 1. Similarly, in ACDC dataset, com-
pared with SOTA HiFormer [8], our UNet and swinUNet methods demonstrate
enhancements of 0.6% and 0.67% in average DSC, respectively. This superior-
ity is also generalized to Glas and MoNuSeg datasets, and our methods ex-
hibit boosted performance over the previous SOTA method, UCTransNet, with
0.7% and 1.1% DSC gain in both datasets, respectively. Fig 4 demonstrates our
method’s notable improvement in Glas dataset. Note that UNet with optimized
skip connections (e.g., UCTTransNet [24]) leads to irrelevant segmentation and
incomplete shapes. Especially segments resembling the background (last row).
While SwinUNet, with our proposed loss, demonstrates results that are closely
comparable to the ground truth, featuring full shapes and clear backgrounds,
particularly in the hard to improvement sample (the third row in Fig 4). These
observations support that our approach can provide contextual supervision, en-
suring correct semantics across blocks and preventing the learning of irrelevant
features.

3.4 Ablation studies

To look deeper into our method, we perform a series of ablation studies using
UNet on the Glas and MoNuSeg dataset. The results and analysis are as follows:
Loss balance hyperparameters. As result shown in Fig 5(a) and (b), we
observe that the λ1 = 0.015 and λ2 = 0.015 is the optimal setting. As the weight
of λ1 decreases (lSCR), the performance deteriorates rapidly. This indicates that
the lack of correct semantic supervision is a reason for the performance decline.
Effectiveness of the proposed losses. We conducted the ablation study with
the different losses as shown in Fig 5(c) and (d). Both datasets exhibit consistent
results, achieving optimal performance when both losses are used simultaneously.
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4 Conclusion

In this paper, we unveil the problem of asymmetric supervision and feature
redundancy in UNet-based medical image segmentation, suggesting a novel ap-
proach through loss optimization that incorporates semantic consistency regu-
larization and internal feature distillation. Our experimental results demonstrate
that addressing these two issues indeed has the potential to improve ViT/CNN-
based UNet models, and the proposed method holds potential across a wide range
of medical image segmentation tasks. In the future, our findings can aid in the
design of UNet, and we will explore additional solutions from this perspective.
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