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Abstract. Accurate segmentation of polyps is crucial for efficient col-
orectal cancer detection during the colonoscopy screenings. State Space
Models, exemplified by Mamba, have recently emerged as a promising
approach, excelling in long-range interaction modeling with linear com-
putational complexity. However, previous methods do not consider the
cross-scale dependencies of different pixels and the consistency in feature
representations and semantic embedding, which are crucial for polyp seg-
mentation. Therefore, we introduce Polyp-Mamba, a novel unified frame-
work aimed at overcoming the above limitations by integrating multi-
scale feature learning with semantic structure analysis. Specifically, our
framework includes a Scale-Aware Semantic module that enables the
embedding of multi-scale features from the encoder to achieve semantic
information modeling across both intra- and inter-scales, rather than the
single-scale approach employed in prior studies. Furthermore, the Global
Semantic Injection module is deployed to inject scale-aware semantics
into the corresponding decoder features, aiming to fuse global and local
information and enhance pyramid feature representation. Experimental
results across five challenging datasets and six metrics demonstrate that
our proposed method not only surpasses state-of-the-art methods but
also sets a new benchmark in the field, underscoring the Polyp-Mamba
framework’s exceptional proficiency in the polyp segmentation tasks.
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1 Introduction

Colonic polyps, identified as protrusions within the colonic mucosa, display con-
siderable variability in shape, texture, and color [1]. Colonic polyps are con-
sidered precancerous lesions, closely associated with the development of colon
cancer [2]. Multiple studies have shown that early colonoscopic examinations
can reduce the incidence of colorectal cancer by 30% [3]. Therefore, accurate
polyp segmentation is crucial in clinical practice. While traditional CNN mod-
els, such as FCN [4], struggle with long-term dependencies, advanced methods
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(e.g., UNet [5]) with encoder-decoder structures improve segmentation by com-
bining features of different resolutions. Despite the great success of this method
in dense prediction, it remains limited by inefficient non-local context modeling
between arbitrary locations, dimming the prospects for further enhancing the
accuracy of complex visual interpretations.

Although CNN-based [6–10] and Transformer-based [11, 12] models represent
two dominant approaches in image segmentation and classification, each has its
inherent limitations. The local receptive fields of CNN-based models restrict their
ability to process long-range information, leading to inadequate feature extrac-
tion and, consequently, suboptimal segmentation outcomes. Transformer-based
models, despite their superior global modeling capabilities, suffer from the draw-
back of requiring computational resources that scale quadratically with image
size [13, 14]. This becomes particularly burdensome for dense prediction tasks,
such as medical image segmentation. To address these current shortcomings, we
develop a novel medical image segmentation architecture that is capable of cap-
turing powerful long-range information while maintaining linear computational
complexity.

Recently, State Space Models (SSMs) have garnered significant interest among
researchers. Built on the foundation of classical SSM research [15], modern SSMs,
such as Mamba [16], not only establish long-range dependencies but also exhibit
linear complexity relative to input size. This architecture has been applied in
various computer vision tasks, including Vision Mamba [17], UMamba [18], Seg-
mamba [19], MambaUNet [20], and VM-UNet [21]. However, the current designs
remain sub-optimal for medical image segmentation for two reasons. First, they
primarily depend on self-attention mechanisms or Visual State Space (VSS) for
context modeling at a singular scale, overlooking the cross-scale dependencies.
Second, these approaches exhibit a lack of consistency in feature representations
across scales. These omissions are particularly substantial in polyp segmenta-
tion, where the significant size variations of polyps and the blurred boundaries
between polyps and surrounding mucosa make accurately locating polyp areas
even more challenging.

To overcome these limitations, this paper introduces the Polyp-Mamba frame-
work, which combines rich context modeling and semantic relationship mining to
achieve accurate polyp segmentation. Polyp-Mamba advances beyond the limita-
tions of existing models by incorporating a Scale-Aware Semantic (SAS) mod-
ule and a Global Semantic Injection (GSI) module, as shown in Fig. 1. The
SAS module utilizes VSS blocks to analyze and interpret semantic information
at multiple scales, facilitating the modeling of semantic data from detailed to
broad granularity. Meanwhile, the GSI module allows for the incorporation of
scale-aware semantics into relevant features, promoting the synthesis of global
and local information into potent hierarchical features. Specifically, we employ
a cross-attention mechanism to facilitate interaction among feature representa-
tions. The significance of this mechanism lies in the capacity of global semantics
to comprehend information across different scales, allowing for the integration
of global semantics into the corresponding local features. Consequently, we can
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Fig. 1. Overview of the proposed Polyp-Mamba, which consists of (a) Polyp-Mamba
Framework (b) Scale-Aware Semantics Module, and (c) Semantic Injection Module.

achieve a more nuanced and comprehensive feature enhancement, thereby im-
proving the model’s recognition of both details and global structures. We find
that the guidance of global semantics helps to effectively handle polyps of vary-
ing sizes, shapes, and textures, while reducing instances of over-segmentation
and under-segmentation.

In summary, the main contributions of this paper are threefold: (1) We pio-
neer the use of the Mamba model for polyp segmentation, effectively addressing
long-term dependencies while maintaining linear computational complexity. Ad-
ditionally, our proposed Polyp-Mamba framework uniquely enhances cross-scale
contextual dependencies and fine-tunes semantic relationships for precise polyp
segmentation. (2) We introduce an SAS Module and a GSI Module. SAS is re-
sponsible for implementing pixel-level context modeling across scales, while GSI
infuses global information into local features. These two modules collaboratively
improve the model’s ability to recognize polyps of varying sizes, shapes, and tex-
tures. (3) Extensive experimental results demonstrate that the proposed Polyp-
Mamba outperforms most contemporary models on five challenging datasets,
showcasing our model’s superior capability in accurate polyp detection.

2 Method

2.1 Architecture Overview

The proposed Polyp-Mamba architecture is outlined in Fig. 1, drawing inspira-
tion from UNet [5] and Swin-UNet [22]. The Patch Embedding layer first divides
the input image x ∈ RH×W×3 into non-overlapping 4×4 patches, and then maps
the image dimensions to C, resulting in an embedded image x′ ∈ RH

4 ×W
4 ×C .
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Layer Normalization [23] is applied to x′ before it enters the encoder for fea-
ture extraction. The encoder consists of four stages, employing patch merging
operations at the end of the first three stages to reduce the height and width
of the input features while doubling the number of channels. Across the four
stages, we use [2, 2, 2, 2] VSS blocks, with the channel counts for each stage be-
ing [C, 2C, 4C, 8C]. Mirroring the encoder, the decoder comprises VSS blocks
and patch-expanding layers, the latter restoring details lost in downsampling
through skip connections to achieve the same feature size output as the encoder.
Following the decoder, a Final Projection layer performs 4-times upsampling
through patch expansion to recover the original height and width of the fea-
tures, followed by a projection layer to adjust the number of channels to match
the segmentation target. VSS blocks serve as SAS module, taking features of
various scales from the encoder as input and generating semantics with scale-
aware capabilities. These semantics are infused into corresponding scale features
through the GSI module to enhance the model’s representational power. Further
details of these modules are discussed in subsequent sections.

2.2 Encoder and Decoder

In the Polyp-Mamba framework, the encoder first processes the reduced-resolution
C-dimensional tokenized input through two consecutive VSS blocks for feature
learning, while maintaining the original dimensions and resolution. The encoder
then applies a triple patch merging operation as a downsampling process, divid-
ing the input into quadrants one-fourth the size, concatenating them, and nor-
malizing dimensions via layer normalization, thus halving the token count and
doubling feature dimensions. Correspondingly, the decoder mirrors the structure
of the encoder, utilizing two consecutive VSS blocks and patch-expanding layers
for feature reconstruction. Unlike the merging layers in the encoder, the decoder’s
expanding layers enhance resolution through 2× upsampling and halve the fea-
ture dimensions. This design allows the decoder to both enhance resolution and
recover deep features, providing rich spatial details for the final predictions.

2.3 Scale-Aware Semantics Module

The VSS block, derived from VMamba [24], is the core module of Poly-Mamba,
with the SAS module consisting of several stacked VSS blocks. The number of
VSS blocks is denoted as L. Each VSS block includes a 2D-Selective-Scan (SS2D)
module, linear layer, and residual connection, as shown in Fig. 1 (b). After layer
normalization, the input is split into two branches. In the first branch, the input
passes through a linear layer and activation function. In the second branch, the
input is processed through a linear layer, depth-wise separable convolution, and
activation function before being fed into the SS2D module for further feature
extraction. Subsequently, the features are normalized using layer normalization
and combined with the output of the first branch through element-wise mul-
tiplication to merge the two pathways. Finally, the features are mixed using a
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linear layer, and this outcome is combined with a residual connection to form
the output of the VSS block. SiLU [25] is used as the default activation function.

As shown in Fig. 1 (a), the scale-aware semantic module takes features of
various scales as inputs. To further reduce computational load, an average pool-
ing operator is used to reduce the number of tokens from different scales to

1
64×64 of the input size. The pooled tokens from different scales now have the
same resolution and are concatenated together as the input for the VSS block.
This module is capable of obtaining a full-image receptive field and rich se-
mantics. Specifically, the SS2D enables spatial information exchange, while the
convolution layer enables cross-scale feature interaction. In each VSS block, after
exchanging information of features from all scales, a residual mapping is learned
and then added to the features to enhance representation and semantics. Finally,
scale-aware semantics are obtained after processing through several VSS blocks.

2.4 Global Semantics Injection Module

After obtaining scale-aware semantics, we directly integrate them with other
features TN . However, there exists a significant semantic gap between features
{T1, . . . ,TN} and scale-aware semantics, which may cause difficulties in accu-
rately identifying the boundaries between polyps and normal tissues, affecting
the quality of segmentation results. The GSI module is therefore introduced to
bridge the semantic gap before merging features by cross-attention mechanism.
As illustrated in Fig. 1 (c), GSI takes different local features from the encoder
and global semantics from VSS as input. The local features pass through a 1×1
convolutional layer, followed by batch normalization, to generate the feature to
be injected. The global semantics are fed into a 1 × 1 convolutional layer, fol-
lowed by batch normalization and a sigmoid layer, to produce semantic weights.
Simultaneously, the global semantics also pass through a 1 × 1 convolutional
layer and batch normalization. The three outputs from these processes are uni-
form in size. These global semantics are then injected into the local tokens by
Hadamard product, and the injected features are added to the global semantics.
The outputs of several GSIs share the same number of channels, denoted as M .

2.5 Loss function

We aim to optimize the performance of Polyp-Mamba, an SSM-based model,
in polyp segmentation tasks. [26] reports that combining multiple loss functions
with adaptive weights at different levels can improve the performance of the
framework with better convergence speed. Therefore, we use binary cross-entropy
loss LBCE and the weighted IoU loss LIou for supervision. λ1 and λ2 are the
weighting coefficients. The loss Ltotal for the proposed Polyp-Mamba can be
formulated as:

Ltotal = λ1LBCE + λ2LIou (1)
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Table 1. Quantitative results on Kvasir and ClinicDB datasets to validate our model’s
learning ability. ‘n/a’ denotes that the results are not available.

Methods mean Dice mean IoU Fw
β Sα Emax

ϕ MAE
K

va
si

r
U-Net [MICCAI’15] [5] 0.818 0.746 0.794 0.858 0.893 0.055

PraNet [MICCAI’20] [33] 0.898 0.840 0.885 0.915 0.948 0.030
Transfuse [MICCAI’21] [34] 0.913 0.857 n/a n/a n/a n/a
SSformer [MICCAI’2022] [11] 0.926 0.874 n/a n/a n/a n/a

PolypPVT [AIR’2023] [32] 0.917 0.864 0.911 0.925 0.962 0.023
CoInNet [TMI’2023] [35] 0.926 0.872 0.939 0.926 0.979 0.020

VM-Unet [arxiv’24] [21] 0.913 0.856 0.902 0.918 0.958 0.027
Polyp-Mamba (Ours) 0.940 0.881 0.942 0.935 0.983 0.016

C
li
ni

cD
B

U-Net [MICCAI’15] [5] 0.823 0.755 0.811 0.889 0.954 0.019
PraNet [MICCAI’20] [33] 0.899 0.849 0.896 0.936 0.979 0.009

Transfuse [MICCAI’21] [34] 0.935 0.887 n/a n/a n/a n/a
SSformer [MICCAI’2022] [11] 0.927 0.876 n/a n/a n/a n/a

PolypPVT [AIR’2023] [32] 0.937 0.889 0.936 0.949 0.989 0.006
CoInNet [TMI’2023] [35] 0.930 0.887 0.940 0.952 0.987 0.006

VM-Unet [arxiv’24] [21] 0.926 0.871 0.927 0.933 0.971 0.009
Polyp-Mamba (Ours) 0.949 0.907 0.952 0.965 0.993 0.005

3 Experiments and Results

Datasets and Metrics: Experiments are conducted on five polyp segmentation
datasets (ETIS [27], CVC-ClinicDB (CVC-612) [28], CVC-ColonDB (ColonDB)
[29], EndoScene-CVC300 (EndoScene) [30], Kvasir-SEG (Kvasir) [31]). We follow
the same training/testing protocols in [32, 33], where the model is trained using
a fraction of the images from CVC-ClinicDB and Kvasir, and its performance is
evaluated by the remaining images, as well as those from CVC-T, CVC-ColonDB,
and ETIS. Specifically, the training set comprises 1,450 images, with 900 from
Kvasir and 550 from CVC-ClinicDB. The test set contains all images from CVC-
T, CVC-ColonDB, and ETIS, which are 60, 380, and 196 images, respectively,
along with the remaining 100 images from Kvasir and the remaining 62 images
from CVC-ClinicDB.

Implementation details. We use rotation and horizontal flips for data aug-
mentation. The input resolution during training is set to 224 × 224, and the
batch size is set to 8. The number of iterations during training is 50k. We use
the AdamW optimizer for training with an initial learning rate of 0.0002, a mo-
mentum of 0.9, and a weight decay of 1e-4. All the experiments are conducted on
one NVIDIA RTX 4090 GPU. The loss coefficients λ1 and λ2 are both set as 1 in
Eq. 1. We employ two metrics (i.e., mean Dice and mean IoU) for quantitative
evaluation, similar to [33, 36, 37, 36]. To provide deeper insight into the model
performance, we introduce four key metrics to evaluate model performance fol-
lowed by [33, 32]. The weighted Dice metric Fw

β addresses the “equal-importance
flaw" inherent in the traditional Dice metric, while MAE measures pixel ac-
curacy. For broader assessment, we use the enhanced alignment metric Emax

ϕ

[38] and Sα [39] to capture both pixel-level and structural similarities between
predictions and ground truths.

Learning Ability. In this section, we conduct two experiments on two seen
datasets to validate the learning capability of our model, namely Kvasir and
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Table 2. Quantitative results on ColonDB, ETIS, and EndoScene datasets. ‘n/a’ de-
notes that the results are not available.

Methods mean Dice mean IoU Fw
β Sα Emax

ϕ MAE
C

ol
on

D
B

U-Net [MICCAI’15] [5] 0.512 0.444 0.498 0.712 0.776 0.061
PraNet [MICCAI’20] [33] 0.709 0.640 0.696 0.819 0.869 0.045

Transfuse [MICCAI’21] [34] 0.781 0.699 n/a n/a n/a n/a
SSformer [MICCAI’2022] [11] 0.802 0.721 n/a n/a n/a n/a

PolypPVT [AIR’2023] [32] 0.808 0.727 0.795 0.865 0.919 0.031
CoInNet [TMI’2023] [35] 0.797 0.729 0.789 0.875 0.897 0.022

VM-Unet [arxiv’24] [21] 0.798 0.712 0.782 0.861 0.904 0.036
Polyp-Mamba (Ours) 0.829 0.743 0.815 0.881 0.931 0.027

E
T

IS

U-Net [MICCAI’15] [5] 0.398 0.335 0.366 0.684 0.740 0.036
PraNet [MICCAI’20] [33] 0.628 0.567 0.600 0.794 0.841 0.031

Transfuse [MICCAI’21] [34] 0.731 0.660 n/a n/a n/a n/a
SSformer [MICCAI’2022] [11] 0.796 0.720 n/a n/a n/a n/a

PolypPVT [AIR’2023] [32] 0.787 0.706 0.750 0.871 0.910 0.013
CoInNet [TMI’2023] [35] 0.759 0.690 0.820 0.859 0.898 0.024

VM-Unet [arxiv’24] [21] 0.761 0.692 0.743 0.869 0.900 0.015
Polyp-Mamba (Ours) 0.825 0.747 0.766 0.889 0.923 0.012

E
nd

oS
ce

ne

U-Net [MICCAI’15] [5] 0.710 0.627 0.684 0.843 0.875 0.022
PraNet [MICCAI’20] [33] 0.871 0.797 0.843 0.925 0.972 0.010

Transfuse [MICCAI’21] [34] 0.893 0.824 n/a n/a n/a n/a
SSformer [MICCAI’2022] [11] 0.895 0.827 n/a n/a n/a n/a

PolypPVT [AIR’2023] [32] 0.900 0.833 0.884 0.935 0.981 0.007
CoInNet [TMI’2023] [35] 0.909 0.863 0.881 0.942 0.989 0.005

VM-Unet [arxiv’24] [21] 0.886 0.818 0.849 0.921 0.968 0.009
Polyp-Mamba (Ours) 0.921 0.875 0.895 0.948 0.993 0.005

CVC-ClinicDB. Kvasir contains 1,000 images selected from a subclass (polyp
class) of the Kvasir dataset. CVC-ClinicDB includes 612 open-access images
from 31 colonoscopy clips. As shown in Table 1, our Polyp-Mamba significantly
outperforms all SOTA models across all metrics on both datasets. This demon-
strates that our model has a strong learning ability to acquire sufficient features
from complex data for accurately identifying and segmenting polyps.

U-Net VM-UnetTransfusePraNet PolypPVT Polyp-Mamba GT

Fig. 2. Qualitative results of different methods.

Generalization Capability. We conducted three experiments to test the model’s
generalization capability on three unseen datasets, namely CVC-ColonDB, ETIS,
and EndoScene (a combination of CVC-612 and CVC-300), each with its own
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Table 3. Ablation study on main components
of the proposed framework on the CVC-612 and
CVC300 datasets. Backbone: U-shape architec-
ture model for medical image segmentation, like
VM-UNet. “w/ GSI": Only add the GSI mod-
ule and employ the simple addition injection
method replaces SAS. “w/ SAS": Only add the
SAS module and employ the last layer features
of the encoder as global semantics. “w/ GSI,
SAS": Add GSI and SAS modules to Backbone.

Settings ClinicDB (seen) EndoScene(unseen)
mean Dice mean IoU mean Dice mean IoU

Backbone (No.1) 0.916 0.861 0.871 0.811
w/ GSI (No.2) 0.926 0.889 0.895 0.831
w/ SAS (No.3) 0.941 0.877 0.915 0.859

w/ GSI, SAS (No.4) 0.949 0.907 0.921 0.875

Image No.1 No.2

No.3 No.4 GT
Fig 3. Qualitative results on ClinicDB
and EndoScene datasets using different
components, corresponding to settings
(No.1-4) in Table 3.

challenging scenarios and attributes. Following the methodology of Fang et
al. [40], we divided them into training, validation, and testing subsets. As shown
in Table 2, our Polyp-Mamba once again significantly outperforms the existing
classic medical segmentation baselines (i.e., U-Net, Transformer) on all three
unseen datasets. Our model also demonstrates its strong generalization ability
in handling complex and diverse data.

Qualitative Results. As shown in Fig. 2, we present the polyp segmentation re-
sults of our Polyp-Mamba on the test set, accurately identifying and segmenting
polyp in various challenging situations. These challenges include the varying sizes
of polyps, homogeneous regions, and the diverse textures on the polyp surface.
Whether amidst highly similar backgrounds or complex textures, Polyp-Mamba
effectively differentiates and precisely locates polyps.
Ablation Study. We analyze each component of our Polyp-Mamba on the
seen and unseen datasets to provide deeper insight into our model. As shown
in Table 3, we investigate the importance of the SAS Module, and quantitative
results indicate that configuration No. 2 (backbone + SAS) outperforms No. 1
(backbone only), clearly demonstrating the necessity of the SAS mechanism for
performance enhancement. Note that we simply add global semantics to each
feature layer. Furthermore, we investigate the contribution of the GSI Module,
with results listed in the first and third columns of Table 3. We observe that
configuration No. 3 improves the performance of the backbone (No. 1) on the
ClinicDB dataset, increasing the average Dice score from 0.916 to 0.941. These
improvements suggest that introducing the GSI component enables our model
to accurately distinguish true polyp tissues. To assess the combined effect of
the SAS and GSI modules, we test the performance of No. 4 (SAS + GSI +
Backbone). Our Polyp-Mamba (No. 4) performs better than other settings (No.
1, No. 2, No. 3). As shown in Fig. 3, visual comparisons indicate that the baseline
performs poorly. Our method improves polyp segmentation accuracy through
SAS and GSI modules, eliminating false-positive areas, especially near adherent
edges or in low-contrast areas.
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4 Conclusion

In this study, we introduce a novel framework Polyp-Mamba for colonic polyp
segmentation. Our key idea is to integrate advanced context modeling and se-
mantic relationship mining, tailored to address the unique challenges presented
by the variability in the appearance of polyps. To this end, we have developed
two novel modules: the SAS Module for discerning semantic information across
scales, and the GSI Module for merging this information with local features to
construct a robust hierarchical representation. Extensive experimental results
on five polyp segmentation datasets demonstrate that we outperform previous
state-of-the-art results by a large margin.

Disclosure of Interests. The authors declare that they have no competing interests.
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