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Abstract. Identification of microvascular obstruction (MVO) in acute
myocardial infarction patients is critical for prognosis and has a direct
link to mortality risk. Current approaches using late gadolinium enhance-
ment (LGE) for contrast-enhanced cardiovascular magnetic resonance
(CMR) pose risks to the kidney and may not be applicable to many pa-
tients. This highlights the need to explore alternative non-contrast imag-
ing methods, such as cine CMR, for MVO identification. However, the
scarcity of datasets and the challenges in annotation make the MVO iden-
tification in cine CMR challenging and remain largely under-explored.
For this purpose, we propose a non-contrast MVO identification frame-
work in cine CMR with a novel coarse-grained mask regularization strat-
egy to effectively utilize information from LGE annotations in training.
We train and validate our model on a dataset comprising 680 cases.
Our model demonstrates superior performance over competing methods
in cine CMR-based MVO identification, proving its feasibility and pre-
senting a novel and patient-friendly approach to the field. The code is
available at https://github.com/code-koukai/MVO-identification.

Keywords: Microvascular Obstruction · Non-Contrast MRI · Spatio-
temporal Features.

1 Introduction

Acute myocardial infarction (AMI) is a leading cause of mortality globally [3,4],
and among its complications, microvascular obstruction (MVO) is particularly
concerning. MVO refers to the blockage of small blood vessels within the heart,
⋆ The work was done during an internship at I2R, A*STAR.
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(a) Cine CMR (b) LGE CMR

Fig. 1: The illustration of cine CMR and LGE CMR: (a) Cine CMR sequences
and a frame in diastolic phase; (b) The LGE CMR image corresponding to the
frame in diastolic phase in (a) and its MVO region.

often occurring even after the main coronary arteries are reopened. This condi-
tion indicates significant cardiac damage and is associated with higher mortality
and complications in AMI patients [8,1]. Clinically, MVO is significant due to
its prediction of adverse outcomes, including extensive myocardial injury, poorer
recovery, and higher rates of heart failure. Therefore, accurate identification of
MVO is essential for effective case management and patient care. The current
gold standard for detecting MVO is late gadolinium enhancement (LGE) cardiac
magnetic resonance (CMR), which uses gadolinium to enhance contrast in CMR
images, as shown in Fig. 1b, providing critical information for guiding clinical
management of AMI patients [14,22].

Several studies have explored deep-learning techniques for MVO identifica-
tion from LGE images [15,6]. However, the use of LGE poses a risk to kidneys,
and studies indicate that around 20% of AMI patients are unable to undergo
LGE due to severe renal impairment [23]. Moreover, incorporating LGE into
CMR imaging leads to increased scanning time and treatment expenses [30].
Therefore, there is a pressing need to minimize gadolinium-based contrast agents
in cardiac imaging for MVO identification.

Efforts have been made to leverage cine CMR as a contrast-free method
for detecting myocardial lesions by observing regional wall motion abnormalities
[16]. Cine CMR, as shown in Fig. 1a, is commonly used for cardiac reconstruction
tasks [20,18]. It can also serve as an auxiliary modality for myocardial tissue seg-
mentation [28,17]. Recent studies have begun to explore the detection of cardiac
tissue and lesions in cine CMR images [29,10]. The importance of spatiotem-
poral features for cardiac lesion detection is highlighted by various approaches
[12,19,26,27,31]. Although cine CMR has made strides in detecting some specific
myocardial lesions, its potential for MVO remains largely under-explored. This
difficulty mainly stems from data scarcity and challenges in annotating MVO in
cine CMR sequences. Alternatively, we are able to delineate MVO regions from
LGE imaging and align them to cine CMR sequences. However, this approach is
prone to misalignment errors, and such errors significantly impair the delineation
accuracy. This is especially critical since MVO regions typically have small sizes,
where even slight errors can lead to an exaggerated impact. Nevertheless, the
presence of MVO can be determined accurately from LGE, which can serve as
ground truth for model training.
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Fig. 2: Illustration of our proposed method includes (a) overview of our frame-
work and (b) details of coarse-grained mask regularization. Initially, cine CMR
images are processed with a 3D CNN block. Then we extract motion features us-
ing four R(2+1)D blocks and apply both spatial and temporal pooling. The spa-
tially and temporally pooled features are input into BERT and a coarse-grained
mask regularization branch to improve MVO feature learning. The dashed block
is removed during the inference stage. The final prediction is obtained from
BERT’s output Ycls.

To this end, we utilize LGE data to determine the presence of MVO and
introduce a novel framework to achieve non-contrast MVO identification in AMI
patients. Our approach incorporates a novel coarse-grained mask regularization
strategy in training. The coarse-grained mask is derived from raw masks labelled
in the LGE data, which might not perfectly align with MVO in cine CMR but
are closely related to the actual MVO region. We then use this coarse-grained
mask to regularize the model training. Inspired by spatiotemporal feature pro-
cessing abilities of residual 2D+1D network (R(2+1)D) [25] and bidirectional
encoder representations from transformers (BERT) [9,13], our network adopts
R(2+1)D network for motion feature extraction and BERT for temporal refine-
ment classifier in identifying MVO from non-contrast cine CMR. The proposed
coarse-grained mask regularization is trained alongside the temporal refinement
classifier using multi-task learning, as depicted in Fig. 2. It includes a spatial
decoder that encourages the model to focus more on the probable MVO region,
thus generating a common representation and alleviating overfitting in the iden-
tification task. Importantly, the regularization branch is removed after training,
requiring only non-contrast cine CMR for inference. Our study suggests that the
coarse-grained mask regularization enhances model training and improves MVO
identification from non-contrast cine CMR. Our contributions can be summa-
rized as follows:
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1. We propose a novel approach for MVO identification by extracting spa-
tiotemporal features from non-contrast cine CMR, which has not been well-
explored previously;

2. To address the challenges in model training, we introduce a coarse-grained
mask regularization strategy to leverage information from LGE data;

3. Our experimental results demonstrate the feasibility of identifying MVO
from non-contrast cine CMR, potentially bridging the gap left by existing
approaches that rely on harmful contrast agents.

2 Method

We propose a novel framework for MVO identification using non-contrast cine
CMR. Our framework employs R(2+1)D motion feature extraction (Section 2.1)
to compute spatiotemporal features. Further enhancement is achieved through
a multi-task learning approach, which simultaneously integrates a temporal re-
finement classifier (Section 2.2) and coarse-grained mask regularization (Section
2.3), as illustrated in Fig. 2. An overall loss function is computed to effectively
train the network (Section 2.4).

2.1 Motion Feature Extraction

Since MVO often manifests as localized motion abnormalities in small regions,
effective motion feature extraction is essential for optimizing model performance.
Drawing inspiration from R(2+1)D’s ability to decompose 3D convolutions into
(2+1)D filters, we employ this technique for motion feature extraction in MVO.
This approach reduces model parameters, which is essential given the limited
volume of MVO data. Additionally, it enables the accurate capture of spatial-
temporal details in cine CMR sequences. Therefore, the utilization of R(2+1)D
provides a balanced method that alleviates overfitting and ensures the detailed
extraction of features from MVO data.

Our implementation starts with a 3D Convolutional Neural Network (CNN)
block, providing efficient initialization to extract key spatiotemporal information.
We then forward the processed feature to four R(2+1)D blocks for advanced
motion feature extraction.

2.2 Temporal Refinement Classifier for MVO Identification

For the complex and subtle motion features of MVO, it is essential to use ad-
vanced temporal modeling for refinement. As illustrated in Fig. 2a, we adopt
BERT for two main purposes: first, to capture temporal dependencies for fea-
ture refinement, and second, as a classifier for MVO identification.

After processing motion features from R(2+1)D blocks through spatial pool-
ing, we fit them into BERT. The R(2+1)D blocks initially extract spatiotemporal
features by separating 3D convolutions into spatial and temporal components,
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thereby improving efficiency and performance. We further incorporate a classifi-
cation embedding xcls to learn the global context of the sequence. The input is
then combined with learned positional embeddings Ei, which embed temporal
order by representing the ith position, enhancing the model’s ability to under-
stand sequence timing. Specifically, the positional embeddings Ei are critical for
maintaining the temporal structure within BERT, ensuring accurate temporal
context comprehension.

Furthermore, the BERT model fine-tunes these combined features to capture
nuanced temporal dependencies critical for identifying MVO. Finally, the output
Ycls is derived, which serves as the classification result indicating the presence
or absence of MVO. This structured approach, combining R(2+1)D for initial
feature extraction and BERT for temporal refinement and classification, ensures
robust handling of the subtle motion features of MVO.

2.3 Coarse-Grained Mask Regularization

With extracted features from R(2+1)D and BERT, it is intuitive to train a
network to predict the MVO region. As we mentioned in the introduction, the
challenge of this task is significantly amplified by the difficulty in obtaining ac-
curate pixel-wise annotations. However, the presence of MVO can be determined
accurately from LGE. As an initial study, we are working with a relatively small
dataset. The current challenge is to find an effective way to train the model
with this limited amount of data. To address this, we propose the coarse-grained
mask regularization, as illustrated in Fig. 2b. This approach aims to empower
the model to identify MVO presence by fully leveraging LGE annotations, in-
tegrating MVO region estimation as an auxiliary task to enhance utilization.
Direct use of raw masks leads to decreased model performance. In contrast, our
coarse-grained mask regularization converts pixel-wise yet misaligned location
information into a block-wise regional context, thus minimizing the impact of
misalignment. Simultaneously, this approach removes the reliance on defining
quantitative thresholds to determine the presence of MVO within a single block.
It shall be noted that the regularization branch is eliminated after the training
process. As a result, we only need non-contrast cine CMR at the inference stage.

Coarse-Grained Mask Computation For a raw mask G with n×n pixels, we
partition it into an m×m grid of non-overlapping blocks. Each block is denoted
by Gij with i and j representing the row and column indices respectively. We
then introduce a computation for the MVO pixel ratio pij , defined as:

pij =

∑⌈n/m⌉
k=1

∑⌈n/m⌉
l=1 Gij(k, l)

⌈n/m⌉2
, (1)

where Gij(k, l) = 1 if the pixel at position (k, l) within the block Gij is from an
MVO region, and 0 otherwise. For edge cases where n is not evenly divisible by
m, zero padding is applied to the remaining insufficient pixels to form a complete
block. Finally, we derive an m×m matrix P = {pij}, providing a lower-resolution
but insightful representation of the MVO regions.



6 Y. Yan et al.

Table 1: Performance comparison for competing methods
Method AUC Specificity Recall F1-score Nb. parameters
ViViT[2] 58.54 67.44 45.45 43.48 41.98M
TimeSformer[5] 59.20 65.12 52.27 47.42 76.54M
C3D[24] 63.31 59.30 56.82 48.07 63.32M
I3D[7] 57.80 62.79 54.54 48.00 12.55M
SlowFast[11] 64.32 70.93 54.54 51.61 33.56M
P3D[21] 63.74 73.26 50.00 49.44 65.68M
Proposed Method 72.70 75.58 56.82 55.56 43.72M

Coarse-Grained MVO Prediction To utilize the coarse-grained mask ob-
tained previously, we designed a spatial decoder to predict the MVO region, pro-
cessing the features outlined in Section 2.1. As depicted in Fig. 2b, the decoder
initiates with a temporal pooling layer, followed by two transposed convolution
blocks. Each block comprises a 1× 1 convolutional layer, a batch normalization
layer, a maximum pooling layer, and a 3× 3 transposed convolution layer. This
configuration transforms the 3D feature maps into high-quality 2D predictions.
Subsequently, we employ a mean-square-error (MSE) loss function to quantify
the discrepancy between the predicted and actual coarse-grained MVO regions.

2.4 Overall Loss Function

The coarse-grained mask regularization branch is concurrently trained with the
temporal refinement classifier branch through multi-task learning. To facilitate
the simultaneous optimization of these tasks, we employ a loss function that
combines cross-entropy (CE) loss Lce for the classifier branch and MSE loss
Lmse for the regularization branch. The formula is denoted as:

Loverall = Lce(Ŷ , Y ) + λ · Lmse(P̂ , P ), (2)

where Ŷ denotes the predicted logits, providing an assessment of MVO presence,
and Y indicates the ground truth of MVO presence. P̂ represents the predicted
coarse-grained mask, as mentioned in Section 2.3, and P stands for the coarse-
grained mask. λ controls the balance between the two branches.

3 Experimental Results

3.1 Dataset and Evaluation Metric

We collected short-axis cine and LGE CMR images on a 3T Siemens CMR
scanner, resulting in a dataset of 680 cases (625 males; 57±9 years) with all
images covering the entire left ventricle. Each case comprised a 30-frame cine
sequence and a corresponding LGE image obtained during diastolic phases. The
cine sequence included the entire cardiac cycle. Image analysis was performed in
a core laboratory setting, where an expert with >9 years of experience in CMR
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Fig. 3: Samples for visualization. The first and the second samples demonstrate
successful MVO identification cases, while the last one shows a failed case. In
LGE, the MVOs appear as dark spots in light myocardial areas. In Mask, blue
denotes the myocardium and white shows MVO annotated based on LGE. Yellow
boxes highlight MVO regions for clarity. MVO Prediction shows our model’s
confidence in each case.

Table 2: Ablation study of BERT and coarse-grained mask regularization
Components Metrics

BERT CGMR AUC Specificity Recall F1-score Nb. parameters
64.45 69.77 45.45 44.44 31.50M

✓ 65.45 70.93 56.82 53.91 37.86M
✓ 67.97 75.58 54.54 53.93 37.56M

✓ ✓ 72.70 75.58 56.82 55.56 43.72M

manually delineated both the endo- and epicardium after rigid registration of
cine and LGE images using the freely available software Segment (version 4.0
R12067). The MVOs were extracted from the myocardium manually or using
a semi-automatic approach on LGE images, serving as raw masks. The data
were split into training (n=550, 221 MVO+) and testing (n=130, 44 MVO+).
To reduce background noise and emphasize MVO movement, we cropped cine
images and the masks to 64 × 64, ensuring the entire myocardium is presented
in each image. We assessed our framework’s performance using four standard
metrics: Area Under Curve (AUC), Specificity, Recall, and F1-score.

3.2 Implementation Details

Cine CMR sequences underwent normalization and data augmentation in the
training phase, including random cropping, flipping, rotation, and photometric
distortions. The batch size was set to 16. We used the AdamW optimizer for
models involving BERT, with a learning rate of 0.0001, and SGD for other
models, with a learning rate of 0.01. A polynomial learning rate scheduler was
employed to adjust the learning rate over 8000 iterations. Models were trained
on an 80G NVIDIA A100 Tensor Core GPU on PyTorch version 1.7.1.
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Table 3: Ablation study for the resolution of coarse-grained mask
Resolution AUC Specificity Recall F1-score
4× 4 68.68 69.77 56.82 52.63
16× 16 72.70 75.58 56.82 55.56
32× 32 67.02 68.60 54.54 50.52
raw mask 62.23 69.77 45.45 44.44

Table 4: Ablation study for different λ in the loss function
value of λ AUC Specificity Recall F1-score
0.01 67.79 73.26 52.27 51.11
0.05 72.70 75.58 56.82 55.56
0.1 70.30 69.77 56.82 52.62

3.3 Performance Comparison

Given the largely unexplored nature of MVO identification in non-contrast imag-
ing, we conduct performance comparisons with algorithms that undertake similar
tasks to access our approach. We compare our approach with several competitive
algorithms, including ViViT [2], TimeSformer [5], C3D [24], I3D [7], SlowFast
[11], and P3D [21]. Experimental results presented in Table 1 demonstrate that
our proposed model yields the best performance with an AUC of 72.70 and a
specificity of 75.58, significantly outperforming other competing methods. Figure
3 reveals our model’s precise identification of MVOs in low-motion situations.
However, minor myocardial movements may obscure MVOs, making them chal-
lenging to differentiate from cardiac movements without MVO.

3.4 Ablation Study

Effectiveness of BERT and Coarse-Grained Mask Regularization We
performed ablation studies on each component to evaluate their impact on over-
all performance. Our experiments included: the backbone alone, the backbone
with BERT, the backbone with coarse-grained mask regularization, and the full
framework. The results in Table 2 indicate that BERT for temporal refinement
classifier and coarse-grained mask regularization, abbreviated as CGMR, both
improve the model’s performance.
Performance at Different Course-Grained Mask Resolutions We inves-
tigated how a coarse-grained mask impacts model performance across various
resolutions, conducting ablation studies at 4×4, 16×16, 32×32 and the raw
mask. Table 3 demonstrates resolution’s significant effect on the model’s perfor-
mance. Additionally, using the raw mask lowers the performance, highlighting
our method’s effectiveness with annotation inaccuracies.
Performance for Different λ in the Loss Function We examined the impact
of the loss weight ratio λ as referenced in 2.4 during model training. The λ was
set between 0 and 1 to investigate performance discrepancies. Results in Table
4 illustrate that selecting an optimal λ can enhance the model’s performance.
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4 Conclusion

This study introduces a novel framework for MVO identification in non-contrast
cine CMR by utilizing motion features and a unique coarse-grained mask reg-
ularization strategy. This method validates the feasibility of identifying MVO
without the need for contrast agents and offers a more patient-friendly diag-
nostic process. Our work brings new perspectives for MVO identification using
non-contrast CMR imaging. Limited by our data, our research focuses on the
presence of MVO from cine CMR. Future work could explore identifying MVO
regions from cine CMR.
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