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Abstract. In recent years, various large foundation models have been
proposed for image segmentation. These models are often trained on large
amounts of data corresponding to general computer vision tasks. Hence,
these models do not perform well on medical data. There have been some
attempts in the literature to perform parameter-efficient finetuning of
such foundation models for medical image segmentation. However, these
approaches assume that all the parameters of the model are available
for adaptation. But, in many cases, these models are released as APIs
or Black-Boxes, with no or limited access to the model parameters and
data. In addition, finetuning methods also require a significant amount
of compute, which may not be available for the downstream task. At
the same time, medical data can’t be shared with third-party agents for
finetuning due to privacy reasons. To tackle these challenges, we pioneer
a Black-Box adaptation technique for prompted medical image segmen-
tation, called BAPS. BAPS has two components - (i) An Image-Prompt
decoder (IP decoder) module that generates visual prompts given an im-
age and a prompt, and (ii) A Zero Order Optimization (ZOO) Method,
called SPSA-GC that is used to update the IP decoder without the need
for backpropagating through the foundation model. Thus, our method
does not require any knowledge about the foundation model’s weights or
gradients. We test BAPS on four different modalities and show that our
method can improve the original model’s performance by around 4%.
The code is available at https://github.com/JayParanjape/Blackbox.
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1 Introduction

Image segmentation is a fundamental problem in medical image analysis tasks.
Many deep learning-based approaches have been proposed in the literature that
segment out various regions of interest across different medical modalities [24]. In
recent years, many foundation models have been proposed, which are large mod-
els with billions of parameters that show excellent performance on downstream

https://github.com/JayParanjape/Blackbox


2 J. Paranjape et al.

tasks like classification [18] and segmentation [13,16,28]. Following the success
of these foundation models, various adaptation approaches have been proposed
that transfer the knowledge learnt by these large-scale models to medical seg-
mentation [14]. These adaptation methods are commonly termed as Parameter
Efficient Finetuning (PEFT) methods and they aim to utilize a given founda-
tion model while tuning only a fraction of its parameters. However, all PEFT
methods make two over-optimistic assumptions. First, they assume that all pa-
rameters of the foundation model are available during training. However, it often
occurs that companies release their AI models as APIs or Black-Boxes instead of
releasing the entire parameter set, training dataset, or codebase due to propri-
etary concerns. In such conditions, all the PEFT methods would fail since they
require gradient computation to work. Secondly, many PEFT methods assume
the availability of high compute resources [25,27], which is not realistic. At the
same time, the transfer of medical data to a third-party system with more re-
sources would result in privacy concerns. In this work, we tackle these concerns
by pioneering a Black-Box adaptation method for medical image segmentation
called Black-Box Adapter for Prompted Segmentation (BAPS). BAPS uses a
frozen image encoder and a trainable Image-Prompt Decoder (IP Decoder), to
produce an input-dependent per-pixel prompt. This is added to the original
image and provided to the foundation model Black-Box. We train the IP De-
coder using a recently proposed ZOO method called Simultaneous Perturbation
Stochastic Approximation with Gradient Correction (SPSA-GC) [17] which does
not require computation of any gradient, thus, not needing any parameter in-
formation about the foundation model. The IP Decoder is a lightweight module
and hence, our method requires minimal compute resources. In summary, our
contributions can be listed as follows:
1) To the best of our knowledge, this is the first paper to explore Black-Box
adaptation for medical image segmentation. For this, we propose BAPS which
has a frozen pre-trained encoder and a lightweight decoder module that can be
trained using derivative-free optimization methods. A visual comparison of our
method with existing approaches can be seen in Figure 1.
2)We show that BAPS can improve the original foundation model’s performance
on four widely used public datasets of different modalities, including endoscopic
images, dermoscopic images, gastrointestinal polyp images, and retinal images.
For this purpose, we conduct experiments using two recently proposed popular
image segmentation foundation models - SAM [13] and MedSAM [16].

2 Related Work

The motivation for using Black-Box adaptation arose from the Natural Lan-
guage Processing (NLP) field. Many custom AI models available in the NLP
industry are deployed as a proprietary service or API [26]. Hence, several works
attempt to adapt them for customized datasets using ZOO algorithms as the
model weights and gradients are not available [22,21,4]. BBT [22] and BBTv2
[21] use a ZOO method called Covariance Matrix Adaptation Evolution Strategy
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Fig. 1: Comparison of our method (c) against full finetuning of a Foundation
Model (FM), (a) and common adaptation techniques (b).

(CMA-ES) [7,8], while RLPrompt [4] uses a reinforcement learning gradient-free
based method to tune prompts, which are then added to the input to the foun-
dation model. However, reinforcement learning and evolutionary strategy-based
methods tend to show high variance and are unstable [15]. Further, they do
not work as well for vision tasks [17]. There are very few methods that per-
form Black-Box adaptation for vision tasks [23,17]. BAR [23] uses a one-sided
approximation for gradient estimation. However, this was found to be inaccu-
rate empirically by a succeeding approach called BlackVIP [17]. BlackVIP uses
a two-sided approximation for gradient estimation and proposes a different ZOO
method for tuning weights. However, both BAR and BlackVIP are proposed only
for the classification task with CLIP [18] as the Black-Box foundation model.
In this work, we pioneer Black-Box adaptation for the recently proposed task of
prompted segmentation.

3 Proposed Method

Model Architecture: Foundation models for segmentation usually perform
the task of prompted segmentation. Given an input image and a prompt, the
foundation model produces a segmentation mask that corresponds to the given
prompt. Hence, for BAPS, we consider an image and a point prompt as the
inputs. The overview of BAPS is shown in Figure 2. The input image is passed
through a pre-trained image encoder that produces image embeddings. We use
the Vision Transformer (ViT) encoder with Masked Autoencoder (MAE) pre-
training [9] as our image encoder because of its strong innate understanding of
images. Hence, it generates highly representative features. On the other hand,
the point prompt is converted into positional embeddings based on its relative
position in the image. This uses a sinusoid function for generating the embed-
dings, similar to ViT [5].

The image and prompt embeddings are then concatenated and passed to
a module called the Image-Prompt Decoder (IP-Decoder). This module is a
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deconvolution network that generates a visual prompt as its output. This is
then added to the original image and passed to the Black-Box foundation model
along with the original point prompt. Thus, the job of the IP-Decoder is to
learn a residual visual prompt that when added to the original image, will make
it easier for the foundation model to segment out the correct shape. Please note
that the IP-Decoder is the only trainable module in BAPS.

Once the Black-Box model generates the prediction, it is compared with the
label using a sum of the Binary Cross Entropy (BCE) loss and dice loss [20].
However, note that the gradients cannot be backpropagated since the weights
in the Black-Box model are not available. Hence, we use a ZOO method called
SPSA-GC [17], which we describe next.

Fig. 2: Overview of BAPS.

SPSA-GC: Simultaneous Perturbation Stochastic Approximation (SPSA) [19]
is a Zero Order Optimization (ZOO) technique that estimates gradients effec-
tively using a two-sided approximation of the derivative. Given a set of param-
eters ϕ and a loss function L, the estimated gradients ĝ are given as follows:

ĝi =
L(ϕi + c∆i)− L(ϕi − c∆i)

2c
∆−1

i , (1)

where c ∈ [0, 1] is a hyperparameter and ∆ represents a random perturbation
vector of the same shape as ϕ. Each element of ∆ is sampled uniformly from
[−1,−0.5]∪ [0.5, 1]. Here, i represents the iteration number. This estimate of the
gradient can be used to update the weights of the model as ϕi+1 ← ϕi−αĝi, where
α is the learning rate. While SPSA is a good approximator, it has been shown
that it can lead to slower convergence [17]. Hence, in SPSA-GC a momentum
term m is added while updating the weights as follows:

mi+1 = βmi − αĝi(ϕi + βmi), ϕi+1 = ϕi +mi+1, (2)

where β denotes the weight of the momentum. This allows the IP Decoder to
train quicker and more stably. However, we found that given a point prompt, the
foundation model produces a reasonable mask without any sort of optimization
(zero-shot performance). Thus, the approximated gradients are small in magni-
tude and the system gets stuck at local minimas more often. To alleviate this, as
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an implementation detail, we add a mechanism to detect the local minima and
increase the learning rate for some iterations during training to help the model
get out of the local minima. This is detailed in the supplementary document.

4 Experiments and Results

We choose the recently proposed Segment Anything Model (SAM) [13] and Med-
SAM [16] as the Black-Box foundation models for our experiments. SAM and
MedSAM are foundation models for the task of promptable segmentation. Given
an image and a prompt in the form of point, text, mask or bounding box, they
can segment out the object of interest corresponding to the prompt. SAM is
trained on a large corpus of natural images while MedSAM is tuned on medical
data including 3D and 2D images. Majority of the training data of MedSAM
includes CT and MRI images. We use the point-based prompt for our experi-
ments. Thus, for a given image and a point prompt, we pass it through BAPS
and generate a visual prompt. This is added to the original image and sent to
the Black-Box foundation model along with the point prompt. We evaluate our
method on four different datasets and calculate the Dice Score (DSC) and Haus-
dorff Distance at the 95th percentile (HD95). For our baselines, we consider the
zero-shot performance of the foundation model without any adaptation, and Vi-
sual Prompting (VP) [12] with SPSA-GC. We measure the upper bound of the
segmentation performance using a white box adaptation of SAM and MedSAM
using LoRA [10], similar to various SAM-based adaptation methods [25,27].

Datasets. We use four widely used publicly available datasets for our experi-
ments. Kvasir-Seg [11] consists of gastrointestinal polyp images, divided into 600
training, 100 validation, and 300 test images. ISIC2018 [3] contains dermoscopic
images for skin lesion segmentation. It is divided into 2594 images for training,
100 for validation, and 100 for testing. The third dataset is REFUGE [6], which
has retinal images for optic disk and optic cup segmentation. It is divided into
800 training, 800 validation, and 800 testing images. The fourth dataset is En-
dovis 17 [1], which has images of endoscopic surgery. It is further divided into
2878 testing and 3231 training images, out of which we use 366 for validation.
The dataloaders will be made available along with the code after the review
process.

Experimental Setup. For all the datasets, we use the same set of data aug-
mentations. These include random rotation up to 10 degrees, random brightness
changes with scale 2, and random saturation changes with scale 2. The images
are scaled to the resolution 512× 512. Based on the validation set performance
of these datasets, we set hyperparameters of the model as: c = 0.01, α = 0.005
for Endovis17 and α = 0.01 for other datasets, β = 0.9. For all datasets, we use
a batch size of 32. Training is done on a single Nvidia RTX A5000 GPU and uses
only 6GB of memory. Note that in our case, we also run the Black-Box on the
same GPU. However, in practice, training would be cheaper since the forward
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propagation in the Black-Box will occur at the server. The Black-Boxes SAM
and MedSAM both are initialized using their ViT-base checkpoints.

Table 1: Our approach improves over the zero-shot performance of the Black-Box
model SAM (row 1). Having the IP Decoder improves performance over direct
visual prompt tuning (row 2). The performance of our method is upper bounded
by the white box adaptation methods like LoRA (row 4).

Foundation Model - SAM

Kvasir-Seg ISIC2018 REFUGE Endovis 17

Method DSC (↑) HD95 (↓) DSC (↑) HD95 (↓) DSC (↑) HD95 (↓) DSC (↑) HD95 (↓)
SAM (ZS) [13] 0.68 99.3 0.66 85.98 0.38 214.98 0.60 89.46

VP [12] 0.69 99.3 0.70 70.96 0.39 201.67 0.63 83.77
BAPS (Our Approach) 0.72 83.55 0.74 70.3 0.44 176.67 0.65 81.56

Whitebox LoRA [10] 0.88 22.23 0.85 30.95 0.85 19.22 0.68 45.39

Results. We tabulate the quantitative results on each of the datasets in Table
1 for SAM and in Table 2 for MedSAM. For all four datasets, we see an aver-
age of 5% improvement in the Dice Score with our method over the foundation
model SAM and an average of 7% over MedSAM. For all the results, evaluation
is done five times with randomly selected point prompts and the mean value is
listed in the table. The standard deviation in each case is less than 0.01. The
increase in performance can be attributed to the strong pre-trained encoder and
IP Decoder of BAPS, which generates a visual prompt as a function of the input
image and the point prompt. Some samples of the modified images after adding
the visual prompt are shown in Figure 4. In row 2, we compare our method with
simply adding the same visual prompt for each image-point pair (no encoder
or I-P Decoder). We see significant improvement, showing the effectiveness of
the encoder-decoder structure. This can also be seen in supplementary Figure 1,
where we plot the training progress of BAPS in comparison to VP, with Med-
SAM as the Black-Box for ISIC2018 and REFUGE. For both these cases, we
see that the average error for BAPS decreases consistently with the number of
iterations. All results with BAPS have a p-value of at most 10−8. Qualitative
results are shown in Figure 3.

Table 2: Our approach improves over the zero-shot performance of the Black-
Box model MedSAM (row 1). Having the IP Decoder improves performance over
direct visual prompt tuning (row 2). The performance of our method is upper
bounded by the white box adaptation methods like LoRA (row 4).

Foundation Model - MedSAM

Kvasir-Seg ISIC2018 REFUGE Endovis 17

Method DSC (↑) HD95 (↓) DSC (↑) HD95 (↓) DSC (↑) HD95 (↓) DSC (↑) HD95 (↓)
MedSAM (ZS) [16] 0.68 98.4 0.70 87.23 0.36 214.29 0.63 87.52

VP [12] 0.68 90.36 0.71 99.2 0.36 214.48 0.63 85.58
BAPS (Our Approach) 0.72 80.01 0.79 66.6 0.44 168.07 0.65 82.4

Whitebox LoRA [10] 0.90 20.05 0.86 30.1 0.85 19.15 0.68 42.92
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Fig. 3: Qualitative Results on all the datasets. GT - ground truth, VP - visual
prompting [12]. The green dot in the image denotes the point prompt given to
the Black-Box foundation model

5 Ablation Analysis

Ablation Over Pretrained Image Encoder. We use the MAE pre-trained
ViT image encoder from Meta (ViT-MAE) [9] since it gives a stronger featur-
ization of images over other encoders. To verify this claim, we make an ablation
analysis by changing the pre-trained encoder and measuring the performance on
the ISIC 2018 dataset. The results are shown in Table 3, where we compare the
results of ViT-MAE with three popular image encoders. We find that ViT-MAE
outperforms CLIP [18] and DINO-Resnet50 [2] significantly. ViT [5] is a strong
encoder. However, the MAE pretraining further improves the downstream per-
formance by 2%
Ablation Over SPSA. We empirically test the effectiveness of SPSA-GC as a
ZOO method by removing each of the components of the algorithm and measur-
ing performance on the ISIC 2018 dataset. As seen in Table 4, we start with the
zero-shot performance of SAM [13], which has no required optimization. Using
just SPSA [19] with zero momentum increases this performance by only 1%. This
is further improved by adding a momentum of 0.9 as suggested by SPSA-GC
[17], finally giving a DSC of 0.74.
Visualizing the Modified Images: To test the effectiveness of BAPS, we
compare the visual results of the Black-Box foundation model MedSAM with and
without adding the visual prompt generated by BAPS. These results are shown
in Figure 4. Here, the zero-shot prediction of MedSAM generates inaccurate
masks as seen in column 3. However, after adding the learnt visual prompt to
the original image, MedSAM can correctly generate the masks. The modified
image can be seen in column 4 of the figure.
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Table 3: Ablation analysis of differ-
ent pre-trained image encoders on
ISIC 2018 dataset

Image encoder DSC

CLIP [18] 0.65
DINO-Resnet50 [2] 0.69

ViT [5] 0.72
ViT-MAE [9] (used in BAPS) 0.74

Table 4: Ablation analysis of
component-wise importance of the
zero-order optimization method.

Optimization method DSC

SAM (ZS) [13] (No ZOO) 0.66
SPSA [19] 0.68

SPSA-GC (Ours) 0.74

Memory Analysis. We perform an analysis of the number of parameters re-
quired to be trained by the client and the memory requirement of the generated
checkpoint. Here, the client refers to the machine used at the downstream appli-
cation level. Note that for our method, SAM is a Black-Box and does not have
to be run on the client machine, resulting in significantly lower memory con-
sumption. This is one of the advantages of the proposed Black-Box paradigm.
BAPS requires just one hundred thousand parameters to be tuned, thus making
the memory required to store the model checkpoint only 0.4 MB as compared to
hundreds to thousands of MBs required by whitebox adaptation methods, which
have at least ten times as many parameters.

Fig. 4: Visualizing the effect of adding the visual prompt on ISIC 2018 dataset.
The Black-Box used for these results is MedSAM.

6 Conclusion

In this work, we proposed one of the first Black-Box adaptation methods, called
BAPS, for the adaptation of foundation models for prompted segmentation.
BAPS consists of a pretrained image encoder and a trainable IP decoder, that
generates a visual prompt as a function of the input image and given prompt.
This visual prompt is added to the original image and given to the foundation
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model. The IP decoder is trained using a novel Zero Order Optimization (ZOO)
method called SPSA-GC. We test BAPS on four different public datasets in
medical segmentation and verify its effectiveness for the recently proposed and
popular foundation models SAM and MedSAM. Finally, we carry out an ablation
study to gauge the effectiveness of different design decisions of BAPS. Thus, our
proposed method can efficiently perform Black-Box adaptation of SAM without
the requirement of gradients.
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