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Abstract. The Transformer architecture has demonstrated remarkable
results in 3D medical image segmentation due to its capability of mod-
eling global relationships. However, it poses a significant computational
burden when processing high-dimensional medical images. Mamba, as a
State Space Model (SSM), has recently emerged as a notable approach for
modeling long-range dependencies in sequential data, and has excelled in
the field of natural language processing with its remarkable memory effi-
ciency and computational speed. Inspired by this, we devise SegMamba,
a novel 3D medical image Segmentation Mamba model, to effectively
capture long-range dependencies within whole-volume features at every
scale. Our SegMamba outperforms Transformer-based methods in whole-
volume feature modeling, maintaining high efficiency even at a resolu-
tion of 64× 64× 64, where the sequential length is approximately 260k.
Moreover, we collect and annotate a novel large-scale dataset (named
CRC-500) to facilitate benchmarking evaluation in 3D colorectal can-
cer (CRC) segmentation. Experimental results on our CRC-500 and two
public benchmark datasets further demonstrate the effectiveness and uni-
versality of our method. The code for SegMamba is publicly available at:
https://github.com/ge-xing/SegMamba.

Keywords: State space model · Mamba · Long-range sequential mod-
eling · 3D medical image segmentation.

1 Introduction

3D medical image segmentation plays a vital role in computer-aided diagnosis.
Accurate segmentation results can alleviate the diagnostic burden on doctors
for various diseases. To improve segmentation performance, extending model’s
receptive field within 3D space is a critical aspect. The large-kernel convolution
layer [15] is proposed to model a broader range of features. 3D UX-Net [11]
introduces a new architecture that utilizes the convolution layer with a large
kernel size (7 × 7 × 7) as the basic block to facilitate larger receptive fields.
However, CNN-based methods struggle to model global relationships due to the
inherent locality of the convolution layer.

https://github.com/ge-xing/SegMamba
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Recently, the Transformer architecture [21,24,26,25,22], utilizing a self-attention
module to extract global information, has been extensively explored for 3D med-
ical image segmentation. For instance, UNETR [6] employs the Vision Trans-
former (ViT) [2] as its encoder to learn global information in a single-scale se-
quence. SwinUNETR [5] leverages the Swin Transformer [14] as the encoder
to extract multi-scale features. While these transformer-based methods improve
the segmentation performance, they introduce significant computational costs
because of the quadratic complexity in self-attention.

To overcome the challenges of long sequence modeling, Mamba [4,13], which
originates from state space models (SSMs) [9], is designed to model long-range
dependencies and enhance the efficiency of training and inference through a se-
lection mechanism and a hardware-aware algorithm. U-Mamba [16] integrates
the Mamba layer into the encoder of nnUNet [8] to enhance general medical
image segmentation. Meanwhile, Vision Mamba [28] introduces the Vim block,
which incorporates bidirectional SSM for global visual context modeling. How-
ever, Mamba has not been fully explored in 3D medical image segmentation.

In this paper, we introduce SegMamba, a novel framwork that combines the
U-shape structure with Mamba for modeling the whole volume global features at
various scales. To our knowledge, this is the first method utilizing Mamba specif-
ically for 3D medical image segmentation. To enhance the whole-volume sequen-
tial modeling of 3D features, we design a tri-orientated Mamba (ToM) module.
Subsequently, we further design a gated spatial convolution (GSC) module to en-
hance the spatial feature representation before each ToM module. Furthermore,
we design a feature-level uncertainty estimation (FUE) module to filter the multi-
scale features from encoder, enabling improved feature reuse. Finally, we propose
a new large-scale dataset for 3D colorectal cancer segmentation named CRC-500,
which consists of 500 3D computed tomography (CT) scans with expert anno-
tations. Extensive experiments are conducted on three datasets, demonstrating
the effectiveness and universality of our method. SegMamba exhibits a remark-
able capability to model long-range dependencies within volumetric data, while
maintaining outstanding inference efficiency.

2 Method
SegMamba mainly consists of three components: 1) a 3D feature encoder with
multiple tri-orientated spatial Mamba (TSMamba) blocks for modeling global
information at different scales, 2) a 3D decoder based on the convolution layer
for predicting segmentation results, and 3) skip-connections with feature-level
uncertainty estimation (FUE) for feature enhancement. Fig. 2 illustrates the
overview of the proposed SegMamba. We further describe the details of the
encoder and decoder in this section.

2.1 Tri-orientated Spatial Mamba (TSMamba) Block

Modeling global features and multi-scale features is critically important for 3D
medical image segmentation. Transformer architectures can extract global in-
formation, but it incurs a significant computational burden when dealing with
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Fig. 1. An overview of the proposed SegMamba. The encoder comprises a stem layer
and multiple TSMamba blocks designed to extract multi-scale features. Within each
TSMamba block, a gated spatial convolution (GSC) module models the spatial features,
and a tri-orientated Mamba (ToM) module represents global information from various
directions. Furthermore, we develop a feature-level uncertainty estimation (FUE) mod-
ule to filter multi-scale features, facilitating more robust feature reuse.

overly long feature sequences. To reduce the sequence length, methods based on
Transformer architectures, such as UNETR, directly down-sample the 3D input
with a resolution of D ×H ×W to D

16 × H
16 × W

16 . However, this approach lim-
its the ability to encode multi-scale features, which are essential for predicting
segmentation results via the decoder. To overcome this limitation, we design a
TSMamba block to enable both multi-scale and global feature modeling while
maintains a high efficiency during training and inference.

As illustrated in Fig. 2, the encoder consists of a stem layer and multiple
TSMamba blocks. For the stem layer, we employ a depth-wise convolution with
a large kernel size of 7×7×7, with a padding of 3×3×3, and a stride of 2×2×2.
Given a 3D input volume I ∈ RC×D×H×W , where C denotes the number of input
channels, the first scale feature z0 ∈ R48×D

2 ×H
2 ×W

2 is extracted by the stem layer.
Then, z0 is fed through each TSMamba block and corresponding down-sampling
layers. For the mth TSMamba block, the computation process can be defined as:

ẑlm = GSC(zlm), z̃lm = ToM
(
LN

(
ẑlm

))
+ ẑlm, zl+1

m = MLP
(
LN

(
z̃lm

))
+ z̃lm,

(1)
where the GSC and ToM denote the proposed gated spatial convolution module
and tri-orientated Mamba module, respectively, which will be discussed next.
l ∈ {0, 1, ..., Nm − 1}, LN denotes the layer normalization, and MLP represents
the multiple layers perception layer to enrich the feature representation.
Gated Spatial Convolution (GSC) The Mamba layer models feature de-
pendencies by flattening 3D features into a 1D sequence, which lacks spatial
information. Therefore, to capture the spatial relationships before the Mamba
layer, we have designed a gated spatial convolution (GSC) module. As shown
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Fig. 2. (a) The gated spatial convolution. (b) The tri-orientated Mamba.

in Fig. 2 (a), the input 3D features are fed into two convolution blocks (each
convolution block contains a norm, a convolution, and a nonlinear layer), with
the convolution kernel sizes being 3×3×3 and 1×1×1. Then these two features
are multiplied pixel-by-pixel to control the information transmission similar to
the gate mechanism [12]. Finally, a convolution block is used to further fuse the
features, while a residual connection is utilized to reuse the input features.

GSC(z) = z + C3×3×3(C3×3×3(z) · C1×1×1(z)), (2)

where z denotes the input 3D features and C denotes the convolution block.
Tri-orientated Mamba (ToM) The original Mamba block models global de-
pendencies in one direction, which does not suit high-dimensional medical im-
ages. Therefore, in the TSMamba block, to effectively model the global infor-
mation of high-dimensional features, we design a tri-orientated Mamba module
that computes the feature dependencies from three directions. As shown in Fig.
2 (b), we flatten the 3D input features into three sequences to perform the cor-
responding feature interactions and obtain the fused 3D features.

ToM(z) = Mamba(zf ) +Mamba(zr) +Mamba(zs), (3)

where Mamba represents the Mamba layer used to model the global information
within a sequence. The symbol f , r, s denote flattening in the forward direction,
reverse direction, and inter-slice direction, respectively.

2.2 Feature-level Uncertainty Estimation (FUE)
The multi-scale features from the encoder include uncertainty information [27,23]
for various structures, such as background and tumor, in 3D data. To enhance
features with lower uncertainty across multiple scales, we design a simple feature-
level uncertainty estimation (FUE) module within the skip connections. As il-
lustrated in Fig. 2, for the ith scale feature zi ∈ RCi×Di×Hi×W i

, we calculate
the mean value across the channel dimension and then use a sigmoid function σ
to normalize this feature. The computation process of the uncertainty ui can be
summarized as follows:

ui = −z̄ilog(z̄i), where z̄i = σ(
1

Ci

Ci∑
c=1

zic). (4)

Hence, the final ith scale feature is represented as z̃i = zi + zi · (1− ui).
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Fig. 3. The data visualization for CRC-500 dataset.

Table 1. Comparison between related datasets and our CRC-500 dataset.

Related Datasets Rectal Cancer Colon Cancer Volume Number

3D RU-Net [18] ! ! 64
MSDenseNet [11] ! ! 43

MSD [20] % ! 190
Zhang et al. [6] ! ! 388

Our CRC-500 ! ! 500

3 Experiments

3.1 Collected Colorectal Cancer Segmentation Dataset (CRC-500)

Colorectal cancer (CRC) is the third most common cancer worldwide among
men and women, the second leading cause of death related to cancer, and the
primary cause of death in gastrointestinal cancer [3]. However, as shown in Ta-
ble 1, the existing 3D colorectal cancer segmentation datasets are limited in size,
and most of them are private. We contribute a new large-scale dataset (named
CRC-500), which consists of 500 3D colorectal volumes with corresponding pre-
cise annotations from experts. Fig. 3 presents examples in 2D format from our
proposed CRC-500 dataset.
Dataset Construct The CT scans were acquired from January 2008 to April
2020. All sensitive patient information has been removed. Each volume was an-
notated by a professional doctor and calibrated by another professional doctor.
Dataset Analysis All the CT scans share the same in-plane dimension of 512×
512, and the dimension along the z-axis ranges from 94 to 238, with a median of
166. The in-plane spacing ranges from 0.685 × 0.685 mm to 0.925 × 0.925 mm,
with a median of 0.826 × 0.826 mm, and the z-axis spacing is from 3.0 mm to
3.75 mm, with a median of 3.75 mm.

3.2 Public Benchmarks and Implementation

BraTS2023 Dataset The BraTS2023 dataset [17,1,10] contains a total of 1,251
3D brain MRI volumes. Each volume includes four modalities (namely T1, T1Gd,
T2, T2-FLAIR) and three segmentation targets (WT: Whole Tumor, ET: En-
hancing Tumor, TC: Tumor Core).
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Table 2. Quantitative comparison on the BraTS2023 and AIIB2023 datasets. The bold
value indicates the best performance.

Methods
BraTS2023 AIIB2023

WT TC ET Avg Airway Tree
Dice ↑ HD95 ↓ Dice ↑ HD95 ↓ Dice ↑ HD95 ↓ Dice ↑ HD95 ↓ IoU ↑ DLR ↑ DBR ↑

SegresNet [18] 92.02 4.07 89.10 4.08 83.66 3.88 88.26 4.01 87.49 65.07 53.91
UX-Net [11] 93.13 4.56 90.03 5.68 85.91 4.19 89.69 4.81 87.55 65.56 54.04

MedNeXt [20] 92.41 4.98 87.75 4.67 83.96 4.51 88.04 4.72 85.81 57.43 47.34

UNETR [6] 92.19 6.17 86.39 5.29 84.48 5.03 87.68 5.49 83.22 48.03 38.73
SwinUNETR [5] 92.71 5.22 87.79 4.42 84.21 4.48 88.23 4.70 87.11 63.31 52.15

SwinUNETR-V2 [7] 93.35 5.01 89.65 4.41 85.17 4.41 89.39 4.51 87.51 64.68 53.19

Our method 93.61 3.37 92.65 3.85 87.71 3.48 91.32 3.56 88.59 70.21 61.33

Table 3. Quantitative comparison on
the CRC-500 dataset.

Methods Dice ↑ HD95 ↓

SegresNet [18] 46.10 34.97
UX-Net [11] 45.73 49.73

MedNeXt [20] 35.93 52.54
UNETR [6] 33.70 61.51

SwinUNETR [5] 38.36 55.05
SwinUNETR-V2 [7] 41.76 58.05

Our method 48.46 28.52

Table 4. Ablation study for different modules
on the CRC-500 dataset.

Methods Modules
Dice ↑ HD95 ↓

GSC ToM FUE

M1 45.34 43.01

M2 ! 46.65 37.01

M3 ! 47.22 33.32

M4 ! ! 48.02 30.89

Our method ! ! ! 48.46 28.52

AIIB2023 Dataset The AIIB2023 dataset [19], the first open challenge and
publicly available dataset for airway segmentation. The released data include 120
high-resolution computerized tomography scans with precise expert annotations,
providing the first airway reference for fibrotic lung disease.
Implementation Details Our model is implemented in PyTorch 2.0.1-cuda11.7
and Monai 1.2.0. During training, we use a random crop size of 128× 128× 128
and a batch size of 2 per GPU for each dataset. We employ cross-entropy loss
across all experiments and utilize an SGD optimizer with a polynomial learning
rate scheduler (initial learning rate of 1e-2, a decay of 1e-5). We run 1000 epochs
for all datasets and adopt the following data augmentations: additive brightness,
gamma, rotation, scaling, mirror, and elastic deformation. All experiments are
conducted on a cloud computing platform with four NVIDIA A100 GPUs. For
each dataset, we randomly allocate 70% of the 3D volumes for training, 10% for
validation, and the remaining 20% for testing.

3.3 Comparison with SOTA Methods

We compare SegMamba with six state-of-the-art segmentation methods, includ-
ing three CNN-based methods (SegresNet [18], UX-Net [11], MedNeXt [20]), and
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Fig. 4. Visual comparisons of proposed SegMamba and other state-of-the-art methods.
Swin denotes SwinUNETR and Swinv2 denotes SwinUNETR-V2.

Table 5. Ablation study for different global modeling modules. TM denotes training
memory, IM denotes inference memory, IT denotes inference time, and OOM represents
out of memory.

Methods Core
module

Input
resolution

Sequence
length

TM
(M)

IM
(M)

IT
(case/s) Is Global

M5 Large-kernel
convolution 1283 262144 18852 5776 1.92 %

M6 SwinTransformer 1283 262144 34000 9480 1.68 %

M7 Self-attention 1283 262144 OOM - - !

Our method TSMamba 1283 262144 17976 6279 1.51 !

three transformer-based methods ( UNETR [6], SwinUNETR [5], and SwinUNETR-
V2 [7]). For a fair comparison, we utilize public implementations of these meth-
ods to retrain their networks under the same settings. The Dice score (Dice)
and 95% Hausdorff Distance (HD95) are adopted for quantitative comparison
on the BraTS2023 and CCR-500 datasets. Following [19], the Intersection over
union (IoU), Detected length ratio (DLR), and Detected branch ratio (DBR)
are adopted on the AIIB2023 dataset.

BraTS2023 The segmentation results of gliomas for the BraTS2023 dataset
are listed in Table 2. UX-Net, a CNN-based method, achieves the best perfor-
mance among the comparison methods, with an average Dice of 89.69% and an
average HD95 of 4.81. In comparison, our SegMamba achieves the highest Dices
of 93.61%, 92.65%, and 87.71%, and HD95s of 3.37, 3.85, and 3.48 on WT, TC,
and ET, respectively, showing better segmentation robustness.

AIIB2023 For this dataset, the segmentation target is the airway tree, which
includes many tiny branches and poses challenges in obtaining robust results.
As shown in Table 2, our SegMamba achieves the highest IoU, DLR, and DBR
scores of 88.59%, 70.21%, and 61.33%, respectively. This also indicates that our
SegMamba exhibits better segmentation continuity compared to other methods.
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CRC-500 The results on the CRC-500 dataset are listed in Table 3. In this
dataset, the cancer region is typically small; however, our SegMamba can ac-
curately detect the cancer region and report the best Dice and HD95 scores of
48.46% and 28.52, respectively.
Visual Comparisons To compare the segmentation results of different methods
more intuitively, we choose six comparative methods for visual comparison on
three datasets. As depicted in Fig. 4, our SegMamba can accurately detect the
boundary of each tumor region on BraTS2023 dataset. Similar to BraTS2023
dataset, our method accurately detects the cancer region on CRC-500 dataset.
The segmentation results show better consistency compared to other state-of-
the-art methods. Finally, on AIIB2023 dataset, our SegMamba can detect a
greater number of branches in the airway and achieve better continuity.

3.4 Ablation Study

The Effectiveness of Proposed Modules As shown in Table 4, M1 represents
our basic method, which includes only the original Mamba layer. In M2, we intro-
duce our GSC module. Compared to M1, M2 achieves an improvement of 2.88%
and 13.95% in Dice and HD95. This shows that the GSC module can improve
the spatial representation before the ToM module. Then, in M3, we introduce
the ToM module, which model the global information from three directions. M3
reports the Dice and HD95 of 47.22% and 33.32, with an improvement of 1.22%
and 9.97% compared to M2. Furthermore, we introduce the GSC and ToM mod-
ules simultaneously, resulting in an increase of 1.69% in Dice and 7.29% in HD95.
Finally, our SegMamba introduce both GSC, ToM, and FUE modules, achieving
the state-of-the-art performance, with the Dice and HD95 of 48.46% and 28.52.
The High Efficiency of SegMamba We verify the high efficiency of our Seg-
Mamba through an ablation study presented in Table 5. M4 is UX-Net [11], which
utilizes large-kernel convolution as its core module. M5 is SwinUNETR [5], which
uses the SwinTransformer as its core module. Both improve receptive field by
computing long range pixels, but they cannot compute the relationship within
a global range. In M6, we use self-attention, a global modeling layer, as the
core module, but it is infeasible due to the computational burden. In compari-
son, our method uses a Mamba-based global modeling module (TSMamba), and
achieves a better training memory (TM) and inference time (IT), even though
the maximum flattened sequence length reaches 260k.

4 Conclusion

In this paper, we propose the first general 3D medical image segmentation
method based on the Mamba, called SegMamba. First, we design a tri-orientated
Mamba (ToM) module to enhance the sequential modeling for 3D features. To
effectively model the spatial relationships before the ToM module, we further
design a gated spatial convolution (GSC) module. Moreover, we design a feature-
level uncertainty estimation (FUE) module to enhance the multi-scale features in
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skip-connections. Finally, we present a new large-scale dataset for 3D colorectal
cancer segmentation, named CRC-500, to support related research. SegMamba
exhibits a remarkable capability in modeling long-range dependencies within
volumetric data, while maintaining outstanding inference efficiency. Extensive
experiments demonstrate the effectiveness and universality of our method.
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