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Abstract. The recent advance of deep learning has shown promising
power for nucleus detection that plays an important role in histopatho-
logical examination. However, such accurate and reliable deep learning
models need enough labeled data for training, which makes active learn-
ing (AL) an attractive learning paradigm for reducing the annotation
efforts by pathologists. In open-set environments, AL encounters the
challenge that the unlabeled data usually contains non-target samples
from the unknown classes, resulting in the failure of most AL methods.
Although AL has been explored in many open-set classification tasks,
research on AL for nucleus detection in the open-set environment re-
mains unexplored. To address the above issues, we propose a two-stage
AL framework designed for nucleus detection in an open-set environment
(i.e., OSAL-ND). In the first stage, we propose a prototype-based query
strategy based on the auxiliary detector to select a candidate set from
known classes as pure as possible. In the second stage, we further query
the most uncertain samples from the candidate set for the nucleus de-
tection task relying on the target detector. We evaluate the performance
of our method on the NuCLS dataset, and the experimental results in-
dicate that our method can not only improve the selection quality on
the known classes, but also achieve higher detection accuracy with lower
annotation burden in comparison with the existing studies.

Keywords: Nucleus Detection · Active Learning · Open-Set Detection
· Histopathological Images.

1 Introduction

H&E stained histopathological image is a routine and most common protocol
used by pathologists for estimating the aggressiveness of human cancer [5,19].
Given the digital histopathological images, accurate detection of their involved
nuclei is a crucial step for tumor assessment (staging, grading, etc.) [28,27]. How-
ever, it is still challenging for the effective detection of nuclei in histopathological
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images since we usually observe large amounts of variations in appearance and
arrangement of nuclei across different samples [25,7].

Recently, since deep learning (DL) has shown excessively success in the field
of computer vision on various natural image detection tasks [13,4], many re-
searchers set out to develop DL algorithms to address the above challenges on
nucleus detection tasks [21,11,26]. However, training an accurate and reliable DL
model requires amounts of labeled data that will increase the annotation burden
for pathologists [22,24,23]. In order to reduce the labeling costs, several active
learning (AL) based object detection algorithms have been proposed aiming at
querying the most valuable samples for annotation [17]. For instance, Kao et al.
[9] design a novel query criterion by considering the measurements of localization
tightness and localization stability. Yoo et al. [29] propose a simple but efficient
AL method with the loss prediction module for the object detection task. All
these studies indicate that the AL learning paradigm can effectively reduce the
annotation efforts for experts.

Although much progress has been achieved, the existing AL based object de-
tection studies usually work on the closed-set assumption where the labeled and
unlabeled data are with the same class distribution. In real-word applications,
the unlabeled pool usually contains the non-target samples from the unknown
classes [15]. For example, suppose that our target is to detect tumor, lympho-
cytes and stromal nuclei from the pathological image patches. However, many
unknown class nuclei (e.g., plasma, macrophages) are also involved in the unla-
beled pool and labeling these non-target nuclei will waste the annotation efforts
from the experts. We call this scenario in which the unlabeled data comes from
both known and unknown classes as an open-set annotation problem [2]. To the
best of our knowledge, only two studies consider such an AL scenario. Specifi-
cally, Ning et al. [15] propose the first AL algorithm (i.e., LfOSA) for open-set
annotation that can dynamically select the examples with highest probability
from known classes for target model training. Based on LfOSA, Qu et al. [16]
further query the most valuable samples from the target classes for annotation.
However, both of these two studies focus on the classification tasks, an effective
and practical AL system for the nucleus detection task is highly desired since
the tumor micro-environment revealed by pathological images is consisted of
many kinds of cell types, and a deployed nucleus detection system will have high
chance to face the unknown conditions.

Based on the above consideration, we propose a novel AL framework called
OSAL-ND(Open-Set Active Learning for Nucleus Detection) for nucleus de-
tection under the open-set scenario. Specifically, in the first stage of OSAL-ND,
a prototype-based query strategy based on the auxiliary detector is used to se-
lect a candidate set from known classes as pure as possible. In the second stage
of OSAL-ND, we develop the target detector and query the most informative
samples from the candidate set for annotation. Experiments are conducted on
the NuCLS dataset with different number of unknown classes. The experimental
results demonstrate that the proposed approach can significantly improve the
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selection quality of known classes and achieve higher detection accuracy with
lower annotation burden than the existing studies.
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Fig. 1. Flowchart of OSAL-ND. In the first stage, we develop a prototype-based can-
didate sample selection (PCSS) strategy to select a candidate set from known classes
as pure as possible based on the auxiliary detector. Then, based on the target detec-
tor, an uncertainty-based target sample selection (UTSS) strategy is designed to select
target samples from the candidate set that are most valuable for the nucleus detection
task. The auxiliary and target detectors will be updated after the target samples are
annotated and incorporated for model training in each round of AL.

2 Method

2.1 Problem Formulation

In the open-set environment for nucleus detection, we define a set of classes
denoted as C = Ckno∪Cunk, where Ckno = {ck}Kk=1 and Cunk = {cs}Ss=1 represent
the set of K known and S unknown classes, respectively. Suppose that we have
a labeled pool L = {xL

i }n
L

i=1 with nL samples, where the nuclei in each xL
i belong

to one of the known classes Ckno. The unlabeled pool U = {xU
j }n

U

j=1 contains
nU samples, whose nucleus category information comes from both known and
unknown classes (i.e., Ckno∪Cunk). The goal of our OSAL-ND is to query valuable
samples from the unlabeled pool that can help improve the nucleus detection
performance on the known classes, while avoiding to annotating samples whose
included objects are mostly come from unknown classes that will lead to a waste
of annotation budget.

2.2 Flowchart of the Proposed OSAL-ND

Fig. 1 shows the flowchart of our two-stage OSAL-ND. In the first stage of OSAL-
ND, we present a prototype-based candidate sample selection (PCSS) strategy
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to select a candidate set including samples from the unlabeled data that are far
away from the unknown classes. Then, we further propose an uncertainty-based
target sample selection (UTSS) method to select the most valuable samples from
the candidate set for the detection task on the known classes. After all the target
samples are annotated by the experts, the detection model will be updated for
the next round of AL.

2.3 Prototype-based Candidate Sample Selection (PCSS)

In PCSS, we introduce an auxiliary labeled pool A = {xA
l }

NA

l=1 consisted of NA

samples, where the nuclei in each sample are annotated with “known” or “un-
known”. In order to reject the unknown nuclei for annotation, we apply the
prototypical representation learning to generate the prototypes of both “known”
and “unknown” classes (i.e., pkno, punk) for candidate sample selection. Specif-
ically, based on the auxiliary pool, we firstly design an auxiliary detector by
the aid of Faster R-CNN [18] with a ResNet-50 backbone to detect and distin-
guish the “known” and “unknown” class nuclei. In addition to the regression and
classification loss in Faster R-CNN, we incorporate a prototype learning loss.
Mathematically, let f t

c ∈ Rd be the feature vector of the t-th nucleus generated
by the RoI head of the auxiliary detector with category c ∈ {kno, unk}. Then,
the prototype loss for the t-th nucleus can be defined as:

L(f t
c) = l(f t

c , pkno) + l(f t
c , punk) (1)

where

l(f t
c , pa) =

{
D(f t

c , pa), c = a

max{0, ∆−D(f t
c , pa)}, otherwise

(2)

Here, D(f t
c , pa) calculates the Euclidean distance between f t

c and pa, ∆ is a
margin variable and we set ∆ = 10 in this study. As shown in Eqs. 1 and 2,
the prototype loss aims at learning the prototypes that are the representative
embeddings of the “known” and “unknown” classes, respectively. Meanwhile, it
also encourages the larger distance between the learned prototypes of “known”
and “unknown” classes. In each round of AL, we firstly sum up the prototype loss
for all nuclei in the auxiliary labeled pool to update the prototype {pkno, punk}.
Then, for each image in the unlabeled pool, we count the number of known class
nuclei whose features generated by the RoI head is closer to pkno than punk.
Finally, we select the top 2N images from the unlabeled pool with the highest
number of known class nuclei and then feed them into the candidate set.

2.4 Uncertainty-based Target Sample Selection (UTSS)

Considering the image with rich information is crucial for increasing the gener-
alization ability of the detection model [12], we further develop an uncertainty-
based target sample selection (UTSS) strategy to query the most uncertainty
samples from the candidate set for the detection task on the known classes.
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Since the object-detection problem can be considered as the combination of the
object-classification and object-localization tasks, we consider both of these two
sides to calculate the uncertainty information of the j-th sample in the unlabeled
pool (i.e., Ij ) as:

Ij = CIj · LIj (3)

where CIj and LIj refer to the uncertainty information for the object-classification
and object-localization tasks, respectively.

On one hand, we adopt an evidence-based uncertainty estimation technique
proposed in [6] to calculate CIj since the traditional entropy based methods tend
to produce inflated confidence values even for the incorrect predictions [14]. More
specifically, for the unlabeled images xU

j with B bounding boxes, suppose that
the current target model can predict the label of each bounding box from K
known classes by a K-dimensional vector hb ∈ RK (b = 1, 2, ..., B). Then, we
follow the study in [3] applying the ReLU activation function on hb to derive
the evidence vector, i.e., Eb = relu(hb) = [eb1, e

b
2, ..., e

b
K ] ∈ RK . Next, we use

subjective logic [8] for the connection of the evidence vector to the parameters of
Dirichlet distribution, and the Dirichlet strength is defined as Qb =

∑K
k=1(e

b
k+1),

by which we can assign a belief mass qbk = ebk/Q
b for each class k. Intuitively,

more evidence for a class leads to a higher belief mass assigned to it and thus
the classification uncertainty for the b-th bounding box can be formulated by:

Unb = 1−
K∑

k=1

qbk (4)

Finally, the uncertainty of xU
j in the classification branch (i.e., CIj) can be

calculated by averaging the uncertainty of all its involved bounding boxes as:

CIj =
1

B

B∑
b=1

Unb (5)

On the other hand, we consider the localization uncertainty of an image
based on the localization tightness of the bounding boxes. Here, the localization
tightness measures how tight a predicted bounding box can enclose the proposal
and we apply the index of IoU to define it. Obviously, the localization uncer-
tainty of a bounding box is high if its localization tightness is low, indicating
that our model is less confident on it. Specifically, given xU

j with B bounding
boxes predicted by the target model, we define the b-th bounding box and its
corresponding proposal as boxb and propb, respectively. Then, the localization
uncertainty (i.e., LIj ) can be calculated by averaging the uncertainty for all its
bounding boxes defined below:

LIj =
1

B

B∑
b=1

(1− boxb ∩ propb

boxb ∪ propb
) (6)
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Table 1. The open-set learning environment for nucleus detection.

Unknown Settings Known Classes Unknown Classes

5 known + 2 unknown Tum, Lym, Str, Pla, Mit Mac, Oth
4 known + 3 unknown Tum, Lym, Str, Pla Mit, Mac, Oth
3 known + 4 unknown Tum, Lym, Str Pla, Mit, Mac, Oth

To select the most uncertain N samples from the candidate set introduced
in Section 2.3, we hope the classification uncertainty (shown in Eq. 5) and the
localization uncertainty (shown in Eq. 6) to be large at the same time, and such
criteria is indicated in Eq. 3.

3 Experiments

Dataset and Settings To validate the effectiveness of the proposed approach,
we perform experiments on the NuCLS dataset [1] that is consisted of nuclei
with 7 categories including tumor (Tum, 6658 nuclei), lymphoc (Lym, 1726 nu-
clei), stromal (Str, 1970 nuclei), plasma_cell (Pla, 1075 nuclei), mitotic_figure
(Mit, 49 nuclei), macrophage (Mac, 183 nuclei), and other (Oth, 119 nuclei).
To construct the open-set learning environment, we set the number of unknown
classes as 2, 3 and 4 for all experiments, and more details can be found in Table
1. For OSAL-ND and all the compared AL methods, we randomly divide the
dataset into five folds, with four folds used for model training and the remaining
for performance evaluation on the target detector. In the train set, we randomly
select 5% samples as initialization labeled set L, while the remaining samples are
designated as the unlabeled pool U . For each round of AL, we set the number
of samples (i.e., N) required annotation as 15% of the training set.

Baselines and Metric We compare our OSAL-ND with the following 7 base-
line methods: i) Random: Query samples randomly. ii) Uncertainty [10,12]:
Query samples with the largest uncertainty of predictions. iii) Coreset [20]:
Query representative samples with diversity. iv) LAAL [9]: Query localization-
aware samples with the highest tightness and stability. v) LL4AL [29]: Query
samples based on the learning loss. vi) CALD [30]: Query samples based on
the consistency. vii) LfOSA [15]: a one-stage framework for open-set AL. viii)
OpenAL [16]: a two-stage framework for open-set AL. Among these methods,
only LfOSA and OpenAL are designed for open-set AL. However, both of these
two methods are designed for the classification task, and we combine it with our
proposed localization uncertainty introduced in Eq. 6 to implement the AL for
object detection. We evaluate the performance of our method and its competitors
by the measurement of mAP at an IoU threshold of 0.5.

Comparisons of nucleus detection performance with different number
of unknown classes In Fig. 2, we plot the mAP curves with the proportion of
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Fig. 2. Comparisons of nucleus detection performance on NuCLS with 2 (first column),
3 (second column), and 4 (third column) unknown classes.

Fig. 3. Comparison of the number of queried nuclei from known classes with different
proportions of labeled images.

labeled images increasing for different number of unknown classes. It is obviously
that the proposed OSAL-ND consistently outperforms other methods regardless
of the number of unknown classes set in the open-set learning scenario. Specifi-
cally, in comparison with the traditional AL algorithms applied in the closed-set
scenario for object detection (i.e., Random, Uncertainty, Coreset, LAAL, LL4AL
and CALD), our OSAL-ND can always achieve higher mAP values since we con-
sider the presence of unknown classes in the open-set scenario. Moreover, we
also find that our method is superior to the two open-set AL algorithms(i.e.,
LfOSA and OpenAL). This is because LfOSA only focuses on querying samples
from known classes for annotation, which overlooks the importance of labeling
the uncertainty samples for improving the detection performance of the model.
On the other hand, although OpenAL selects the most informative samples for
annotation, it is calculated via the measurement of entropy that may produce
inflated confidence values even for the incorrect predictions [14].

Comparisons of different methods for querying nuclei from known
classes In Fig. 3, we compare the number of queried nuclei from known classes
among different methods. It is evident that OSAL-ND can more effectively iden-
tify nuclei from known classes. This is because our OSAL-ND selects known class
nuclei based on the prototype learning, which can more accurately characterize
the difference between known and unknown class samples.
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Fig. 4. Ablation study on NuCLS with 2 (first column), 3 (second column), and 4
(third column) unknown classes.

Ablation Study To further evaluate the effectiveness of our method, we com-
pare OSAL-ND with its following variants. w/o CI: Select target samples with-
out considering the uncertainty information for the object-classification task.
w/o LI : Select target samples without considering the uncertainty information
for the object-localization task. UTSS: Only applying the uncertainty-based tar-
get sample selection strategy for AL. PCSS:Only applying the prototype-based
candidate sample selection strategy for AL. As shown in Fig. 4, the proposed
OSAL-ND is superior to w/o CI and w/o LI, indicating that the uncertainty
information is important for both object localization and classification tasks. In
addition, it is obvious that OSAL-ND can achieve higher mAP than UTSS and
PCSS with different proportions of labeled data, indicating the advantage of our
method that considers both purity and uncertainty information in the sample
selection process.

Comparisons of visualization results among different methods Fig. 5
presents the sample visualization results of different methods using 20% labeled
data. On one hand, OSAL-ND shows its superior performance in distinguishing
different nucleus types. We can clearly find that LfOSA and OpenAL are more
likely to misclassify nucleus category in comparison with our OSAL-ND. On
the other hand, OSAL-ND outperforms LfOSA and OpenAL in terms of the
localization task. Specifically, LfOSA and OpenAL exhibit issues with higher
missing detection rate (shown with ⊗ symbol) in comparison with OSAL-ND.
Moreover, OpenAL also faces the problems of over-detection (shown with arrow
symbol) when comparing with OSAL-ND.

4 Conclusion

In this paper, we propose OSAL-ND as a novel AL framework for detecting nuclei
in the open-set environment. OSAL-ND is a two-stage AL framework that can
effectively reduce the annotation burden for pathologists. In the first stage, we
select a candidate set as pure as possible. In the second stage, we consider both
classification and localization uncertainty to select the most informative samples
for annotation. The experimental results demonstrate the superior performance
of our OSAL-ND in comparison with the existing studies.
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Fig. 5. Comparison of visualization results among different methods.
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