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Abstract. This study introduces a novel semi-supervised method for
3D segmentation of tubular structures. Complete and automated seg-
mentation of complex tubular structures in medical imaging remains a
challenging task. Traditional supervised deep learning methods often de-
mand a tremendous number of annotated data to train the deep model,
with the high cost and difficulty of obtaining annotations. To address
this, a semi-supervised approach could be a viable solution. Segment-
ing complex tubular structures with limited annotated data remains a
formidable challenge. Many semi-supervised techniques rely on pseudo-
labeling, which involves generating labels for unlabeled images based
on predictions from a model trained on labeled data. Besides, several
semi-supervised learning methods are proposed based on data-level con-
sistency, which enforces consistent predictions by applying perturbations
to input images. However, these methods tend to overlook the geomet-
ric shape characteristics of the segmentation targets. In our research,
we introduce a task-level consistency learning approach that incorpo-
rates cross geometry consistency and the Hausdorff distance consistency,
taking advantage of the geometric shape properties of both labeled and
unlabeled data. Our deep learning model generates both a segmentation
map and a distance transform map. By applying the proposed consis-
tency, we ensure that the geometric shapes in both maps align closely,
thereby enhancing the accuracy and performance of tubular structure
segmentation. We tested our method on airway segmentation in 3D CT
scans, where it outperformed the recent state-of-the-art methods, show-
ing an 88.4% tree length detected rate, 82.8% branch detected rate, and
89.7% precision rate.

Keywords: semi-supervised learning · tubular structure segmentation ·
cross geometry consistency · Hausdorff distance consistency.
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1 Introduction

The precise extraction of tubular structures, such as airways and blood vessels,
is crucial for many computer-aided diagnosis systems. However, accurate and
reliable segmentation of these structures in medical imaging remains a signifi-
cant challenge. In the last decade, deep learning techniques have had a profound
impact on medical image analysis. While many fully supervised deep learning
models have reached state-of-the-art performance in tubular structure segmen-
tation [22, 23], they are heavily reliant on the amount of labeled data. Yet the
task of annotating tubular structures in medical images, such as airways in chest
CT scans, is notably time-consuming and requires extensive expertise.

To mitigate the issue, many studies on semi-supervised learning (SSL) have
been proposed. SSL methods leverage both labeled and unlabeled data to im-
prove segmentation performance. The pseudo-labeling technique is an intuitive
and common strategy for generating pseudo-labels for unlabeled samples based
on the prediction results from a model trained on labeled data [26, 6]. Besides
the pseudo-labeling approach, unlabeled data can be utilized via consistency
learning, which encompasses two categories: data-level and task-level consistency
learning. Data-level consistency learning promotes the stability of model predic-
tions for input images, even when these images undergo various perturbations.
French et al. [5] introduced an input perturbation by applying the CutMix tech-
nique [25] to input images. Ouali et al. [15] proposed several feature perturbations
to enforce the consistency of an input image and its perturbed versions. Although
the abovementioned methods achieved good performance in semantic segmen-
tation through various perturbations, they ignore the geometric information of
segmentation objectives.

Task-level consistency learning emphasizes establishing regularization at the
task level through the addition of auxiliary tasks, enabling the utilization of geo-
metric information [13, 2]. Luo et al. [12] blended the level set function regression
task with the segmentation task, establishing a dual-task consistency framework
for SSL. Their method enforces the predicted segmentation maps to be consis-
tent with the predicted signed distance transform maps. Liu et al. [9] proposed
a shape-aware multi-task framework that contained segmentation, signed dis-
tance map prediction, and organ contour prediction. Liu et al. [10] introduced a
dual-view network to predict two pairs of a distance transform (DT) map and a
segmentation map. They applied a geometry consistency to the predicted maps.

Previous studies in task-level consistency learning have shown impressive re-
sults in segmentation by leveraging geometric information from auxiliary tasks,
yet have ignored the potential of geometric information from the segmentation
task itself. We propose that geometric information can be derived not only from
auxiliary tasks but also directly from the segmentation task. Predicted segmen-
tation maps can be transformed to distance transform maps, offering a deeper
understanding of geometric characteristics. Our approach introduces a method
to harness geometric information through cross geometry consistency and Haus-
dorff distance consistency from both segmentation maps and distance transform
maps, aiming to improve segmentation performance.
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Fig. 1: The SSL framework of our method.

The contributions of this work are summarised as follows: 1) We design a
task-level framework for SSL. 2) We introduce a cross geometry and a Haus-
dorff distance consistency learning method which could leverage geometric in-
formation from both the segmentation task and the auxiliary task. Our method
achieved an 88.4% tree length detected rate and 82.8% branch detected rate,
outperforming previous methods.

2 Method

2.1 Overview

This study aims to develop a SSL framework to increase the accuracy of segment-
ing tubular structures. We emphasize a consistency learning method that utilizes
additional information by introducing an auxiliary task. For this purpose, we use
the DT regression task, chosen for its ability to reflect the geometric features
of the segmentation objectives [14]. Our task-level SSL framework is shown in
Fig. 1. Our deep model is a multi-head convolutional neural network, built upon
the architecture of the 3D U-Net [3]. Our network has two output heads with
respect to the main segmentation task and the auxiliary DT regression task.

2.2 Cross geometry consistency

The concept of cross geometry consistency is straightforward yet effective. A DT
map and segmentation map should mutually represent the same geometric shape
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of the segmentation objective. This implies that a predicted segmentation map
can serve as an unsupervised reference for the predicted DT map and vice versa.
Our cross geometry consistency is founded on this mutual referencing, includ-
ing two kinds of consistencies: the segmentation-reference consistency and the
DT-reference consistency. Let P = {pi|i = 1, ..., N} and R = {ri|i = 1, ..., N}
represent the sets of predicted segmentation maps and predicted DT maps, re-
spectively. The segmentation-reference consistency loss is defined as

Lseg−ref (pi, ri) =

|P|∑
i=1

∥H(ri)− pi∥2, (1)

where |P| represents the number of the total predicted segmentation maps, as
same as the predicted DT maps. H(·) is a smoothed Heaviside function that
transforms a predicted DT map to a binarized pseudo-label map in a differen-
tiable way, producing the reference of the predicted segmentation map. We uti-
lize the hyperbolic tangent function as the smoothed Heaviside function, which
is written as

H(ri) = tanh(γri), (2)

where γ is a large constant to approximate a Heaviside function.
Similarly, the DT-reference consistency loss is defined as

LDT−ref (pi, ri) =

|P|∑
i=1

∥ri −D(pi)∥2, (3)

where D(·) denotes the soft distance transform (SDT) to produce pseudo-DT
maps. In contrast to the differentiable soft binarization, the differentiable SDT
is more challenging due to the calculation of finding the minimal distance to
the boundary of the segmentation objective. Inspired by [17, 27], we present a
differentiable DT calculation. Firstly, we binarize the predicted segmentation
maps with another smoothed Heaviside function Ĥ(·) using a sigmoid function,
similarly to H(·). We calculate a foreground boundary map through the function
B(pi) = Dilation(Ĥ(pi))− Ĥ(pi) with morphological operations. Dilation(·) is
a soft dilation operation that is simulated using a 3 × 3 × 3 max pooling func-
tion [19]. Let B = {bi|i = 1, ..,m} denotes the set of boundary voxels in a bound-
ary map. Given a foreground voxel f in a segmentation map, d(f, b1), ..., d(f, bm)
represents the distances from the foreground voxel f to boundary voxels. d(·, ·)
denotes the Euclidean distance. Via the log-sum-exponential [17], the minimal
distance function M(f, bi) is defined as

M(f, bi) = min d(f, b1), ..., d(f, bm)

= lim
λ→0

−λ log
(
exp

(
−d(f,b1)

λ + ...+ exp
(
−d(f,bm)

λ

)))
,

(4)

where λ approaching 0 from the left. In practice, the λ could be a small neg-
ative number (e.g., -0.1). The element-wise minimal distance calculation could
be implemented with convolutional operations. We utilize a 3D convolutional
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kernel K that each element is initialized with a Euclidean distance value from
the element to the centroid of the K. The centroid locate at the average position
of all the points along three dimensions. We set the kernel size to 33 × 33 × 33
to ensure every voxel inside the foreground region could touch the boundary.
Following [27], a SDT map could be calculated by

D(pi) = −λ log(B(pi) ∗ exp
(
−K

λ

)
, (5)

where ∗ denotes the convolution operation using the kernel exp
(
−K

λ

)
. exp

(
−K

λ

)
is an element-wise operation which applies the exponential function to each el-
ement of K. An example of our SDT map is shown in Fig. 2. Our cross ge-
ometry consistency comprises the segmentation-reference consistency and the
DT-reference consistency to improve segmentation performance, which is writ-
ten as

Lcross(P,R) = Lseg−ref (P,R) + LDT−ref (P,R). (6)

2.3 Hausdorff distance consistency

The Hausdorff distance is calculated between the boundaries of the estimated
segmentation and the ground-truth segmentation. It demonstrates the boundary
information of the segmentation objectives. Following [7], in image segmentation,
the Hausdorff distance metric could be written as

Lhd(pi,gi) =
1

|P|

|P|∑
i=1

((pi − gi)
2 ◦ (pdt

i + gdt
i )), (7)

where ◦ denotes Hadamard product. pi and gi represent the i−th predicted
segmentation map and the corresponding ground truth. pdt

i and gdt
i represent

the corresponding DT maps of the predicted segmentation map and the ground
truth.

In our Hausdorff distance consistency, the pseudo-label maps and pseudo-DT
maps are leveraged as the ground truth maps and the DT ground truth maps,
respectively. The proposed consistency enables the predicted segmentation maps
and DT maps to mutually supervise the boundary segmentation. Our Hausdorff
distance consistency is defined as

Lhdc(pi, ri) =
1

|P|

|P|∑
i=1

((pi −H (ri))
2 ◦ (ri +D(pi))). (8)

2.4 Semi-supervised training

Our semi-supervised training framework integrates supervised and unsupervised
training. The labeled data is utilized for both segmentation and DT regression
tasks in a supervised manner, with Lseg representing the loss for segmentation
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Fig. 2: Examples of different DT maps.: (a) Ground truth, (b) Traditional dis-
tance transform, (c) Soft distance transform. For clear visualization, we provide
the max intensity projection maps of DT maps.

and Lreg for DT regression. For these, we apply Dice loss and mean square error
loss, respectively. As for the unsupervised training, according to Eqs. 6 and 8, the
proposed cross geometry consistency and Hausdorff distance consistency could
be applied to both the labeled data and unlabeled data in an unsupervised way.
The overall loss function of the semi-supervised training method is written as

Loverall(Pl,P,G,Q,R) = Lseg(Pl,G) + Lreg(R,Q)

+α(Lcross(P,R) + Lhdc(P,R)),
(9)

where Pl, G, and Q denote the predicted segmentation maps of labeled data,
the corresponding ground truth, and the corresponding DT ground truth, re-
spectively. α is a trade-off parameter.

3 Experiments and results

To assess our proposed method, we conducted experiments on bronchus segmen-
tation using a binary airway segmentation data set [18]. The data set consists
of 90 CT scans (70 from LIDC [1] and 20 from the training set of the EX-
ACT’09 [11]) with slice thicknesses between 0.5 and 1.0 mm. The CT slices
had dimensions of 512×512 pixels, with a resolution ranging from 0.50 to 0.82
mm. We randomly selected 80 cases for training and the remaining 10 cases for
testing. We employed the tree length detected rate (TD) [4], branch detected
rate (BD) [4], and precision rate as our evaluation metrics. Specifically, TD is
the percentage of ground truth skeleton voxels within predictions relative to the
total ground truth skeleton length. BD measures the predicted branches as a
percentage of the actual ground truth branches.

In the training phase, we used an SGD optimizer with an initial learning rate
of 0.01, decaying by 0.1 every 2000 iterations. The batches comprised 4 images,
split equally between labeled and unlabeled, and we employed random cropping
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Table 1: Evaluation results over the 8-protocol and 16-protocol settings.
Approach Labeled/Unlabeled TD (%) BD (%) Precision (%)

3D U-Net [3] 8/0 80.7±2.5 72.1±2.9 93.6±0.5
3D U-Net [3] 16/0 82.8±0.2 73.5±0.5 92.2±0.4
3D U-Net [3] 80/0 88.8±3.9 89.6±2.6 91.3±0.2

MT [20] 8/72 80.4±0.1 72.5±0.1 93.4±0.2
SASSNet [8] 8/72 79.3±0.9 71.2±1.4 93.5±0.2
DTC [12] 8/72 80.2±1.1 71.8±0.8 93.0±0.9
ICT [21] 8/72 80.9±1.4 71.4±2.2 93.7±1.0
Co-BioNet [16] 8/72 80.1±0.4 70.6±0.4 94.9±0.1
Our method 8/72 87.6±0.1 83.0±0.2 88.8±0.1

MT [20] 16/64 83.1±0.1 75.3±0.4 92.2±0.1
SASSNet [8] 16/64 81.5±1.1 72.5±1.7 93.2±0.2
DTC [12] 16/64 81.7±1.0 73.3±1.2 92.8±0.6
ICT [21] 16/64 80.7±3.6 72.4±4.9 92.9±1.0
Co-BioNet [16] 16/64 82.9±3.1 73.5±4.3 91.9±0.9
Our method 16/64 88.4±0.5 82.8±0.5 89.7±0.8

(size 112 × 112 × 80 voxels), rotation, and flipping for data augmentation. The
trade-off parameter λ was adjusted via a time-dependent Gaussian warming-
up approach [20, 24]. We conducted two experiments with 8-protocol and 16-
protocol settings (i.e., the numbers of labeled training samples were 8 and 16).

We compared our method with five state-of-the-are methods, including MT
[20], SASSNet [8], DTC [12], ICT [21], and Co-BioNet [16]. The previous methods
were reproduced using the 3D U-Net as the backbone architecture, as same as
our method. The experimental results are shown in Table 1. In the 8-protocol set-
ting, our approach surpassed comparison methods with the highest TD and BD
rates (TD: 87.6%, BD: 83.0%, precision: 88.8%). With the 16-protocol setting, it
again led with the highest TD and BD rates (TD: 88.4%, BD: 82.8%, precision:
89.7%), comparable to a fully supervised 3D U-Net’s TD performance. However,
the precision rate of our method was lower compared to other methods. Several
previous methods underperformed 3D U-Net in terms of the TD or BD, which
might be caused by the modifications in the segmentation task and model archi-
tecture. The qualitative results are shown in Fig. 3. In the emphasized dotted
boxes, we observed that our method segmented more small branches, compared
to previous methods. We also observed that our method over-segmented several
airway branches, causing a false positive issue and decreasing the precision rate.
We conducted an ablation study, with 3D U-Net as the baseline, to assess the im-
pact of cross geometry and Hausdorff consistencies. Results, detailed in Table 2,
show that both consistencies improved TD and BD metrics. Integrating these
consistencies further enhanced the segmentation performance of our method.
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Table 2: Ablation study over the 8-protocol and 16-protocol settings.
Approach Labeled/Unlabeled TD (%) BD (%) Precision (%)

Baseline 8/0 80.7±2.5 72.1±2.9 93.6±0.5
Baseline 16/0 82.8±0.2 73.5±0.5 92.2±0.4
Baseline 80/0 88.8±3.9 89.6±2.6 91.3±0.2

Baseline + cross 8/72 82.0±0.4 74.2±1.3 95.2±0.2
Baseline + Hausdorff 8/72 82.1±1.6 72.4±2.1 93.3±0.1
Our method 8/72 87.6±0.1 83.0±0.2 88.8±0.1

Baseline + cross 16/64 83.7±2.1 72.5±6.0 84.7±1.1
Baseline + Hausdorff 16/64 84.0±1.3 74.4±4.9 89.7±0.1
Our method 16/64 88.4±0.5 82.8±0.5 89.7±0.8
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Fig. 3: Segmentation results over 8-protocol and 16-protocol settings.

The precision rate of our method underperformed previous methods and
baselines due to increased over-segmentation. This issue arised from two main
factors: 1) incomplete annotations: The proposed method detected additional
unannotated branches, uncovering incomplete annotations in the ground-truth.
This capability led to more comprehensive segmentation of branches not labeled
in the ground-truth, owing to the strength of extracting geometric shape features,
2) boundary over-segmentation: The proposed method over-segmented branch
boundaries, resulting in a bit thicker branches and false positives, likely due
to errors in approximated differentiable distance transform. Combining cross-
geometric shape consistency and Hausdorff consistency further extracted geo-
metric shape information, compared to only using one of them. Owing to the
combination, the proposed method segmented unannotated airways more pre-
cisely, but also introduced some false positives, deteriorating evaluation metrics.
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4 Conclusions

In this paper, we present a consistency learning-based semi-supervised method
for 3D tubular structure segmentation. We proposed a cross geometry con-
sistency and a Hausdorff distance consistency which could effectively leverage
geometry shape and boundary information from unlabeled data. Our method
improved the segmentation performance in terms of the tree length rate and
branch detected rate. However, the false positive issue exists in our method,
decreasing the precision rate of our method. On the other hand, we evaluated
our method only on the airway segmentation task in this paper. Our method
theoretically works on other tubular structure tasks such as the blood vessel
segmentation task. The improvements in precision rate and evaluations on other
tubular structure segmentation tasks will be our future work.
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